УДК 615.322

ОПРЕДЕЛЕНИЕ ОСТРОЙ ТОКСИЧНОСТИ КОМПЛЕКСНОГО ФИТОЭКСТРАКТА НА БЕЛЫХ МЫШАХ

© Убеева Елена Алексанровна

аспирант кафедры фармакологии Бурятский государственный университет Россия, 670002, Улан-Удэ, ул. Октябрьская, 36 а E-mail: ubeeva.ip@mail.ru

© Ботоева Елена Аполлоновна

кандидат медицинских наук, доцент, заведующая кафедрой акушерства Бурятский государственный университет Россия, 670002, Улан-Удэ, ул. Октябрьская, 36 а E-mail: elenabotoeva@list.ru

© Убеева Ираида Поликарповна

доктор медицинских наук, профессор Бурятский государственный университет Россия, 670002, Улан-Удэ, ул. Октябрьская, 36 а профессор ФГБОУ ДПО ИГМАПО РМАНПО Минздрава России E-mail: ubeeva.ip@mail.ru

© Николаев Сергей Матвеевич

доктор медицинских наук, профессор Бурятский государственный университет Россия, 670002, Улан-Удэ, ул. Октябрьская, 36 а ведущий научный сотрудник ИОЭБ СО РАН профессор ФГБОУ ДПО ИГМАПО РМАНПО Минздрава России E-mail: tatur75@mail.ru

© Цыбикова Елена Николаевна

кандидат медицинских наук, доцент кафедры общественного здоровья и здравоохранения Бурятский государственный университет Россия, Улан-Удэ, 670002, ул. Октябрьская, 36 а E-mail: etsybikova@mail.ru

При определении острой токсичности нового комплексного фитосредства, состоящего из гипекоума прямого Hypecoum erectus L., копеечника даурского Hedysarum dauricum, солодки уральской Glycyrhhiza uralensis Fischer, календулы лекарственной Calendula officinalis и шлемника байкальского Scutellaria baicalensis на белых мышах с помощью двух способов: метода Кербера и пробит-анализа, получены сходные результаты.

Ключевые слова: комплексное растительное лекарственное средство, острая токсичность, пробит-анализ.

В настоящее время ввиду широкого распространения патологии печени, нередких хронических и затяжных форм вирусных гепатитов, частоты токсических медикаментозных и алкогольных повреждений особую актуальность приобретает получение гепатопротективных средств [1, 2]. Значительный успех в лечении

вирусных гепатитов достигнут в последние годы с помощью новых противовирусных препаратов, но их применение требует индивидуального подхода с учетом биологических свойств вируса, генетических свойств иммунной системы пациента, функционального состояния печени, особенностей патологического процесса, токсических реакций [6, 8]. Перспективным представляется создание растительных лекарственных средств, обладающих широким спектром фармакотерапевтического воздействия, низкой токсичностью и возможностью потенцировать эффект благодаря сочетанию различных биологически активных веществ, особенно в комплексных фитосредствах [3, 4, 5].

Цель работы

Определение острой токсичности и основных токсикологических параметров нового комплексного фитосредства по методу Кербера и проведение пробитанализа.

Материалы и методы

Работа проводилась 56 на белых мышах обоего пола с массой тела 16–20 г. Содержание животных осуществляли в соответствии с «Правилами лабораторной практики (GLP)» и Приказа МЗ РФ № 708Н от 23.08.2010 г. «Об утверждении правил лабораторной практики». Лабораторные животные, соответствующие требованиям для включения в эксперимент, разделялись на группы с учетом пола, возраста, массы и принципа рандомизации. Экспериментальную работу проводили в соответствии с «Правилами проведения работ с использованием экспериментальных животных» (Приложение к приказу МЗ СССР № 755 от 12.08.77 г.), «Правилами, принятыми в Европейской конвенции по защите позвоночных животных» (Страсбург, 1986). Протокол исследования согласован с комитетом по этике БГУ (№ 2 от 04.12.2016).

Объектом исследования являлось новое комплексное растительное средство, представляющее собой комплексный сухой экстракт. Состав фитополиэкстракта представлен сухими экстрактами травы гипекоума прямостоячего (*Hypecoum erectum* L.; Papaveraceae), травы копеечника альпийского (*Hedysarum alpinum* L.; Leguminosae), корней солодки уральской (*Glycyrrhiza uralensis* Fisch.; Leguminosae), цветков календулы лекарственной (*Calendula officinalis* L.; Compositae) и корней шлемника байкальского (*Scutellaria baicalensis* Georgi; Lamiaceae) в соотношении 5:5:4:4:2.

Количественную стандартизацию средства осуществляли методом ВЭЖХ-УФ с использованием микроколоночного жидкостного хроматографа Милихром А-02 (Эконова, Новосибирск, Россия), снабженного колонкой ProntoSIL-120-5-С18 AQ (2×75 мм, Ø 5 мкм; Metrohm AG, Herisau, Switzerland); подвижная фаза: 0.2 М LiClO₄ в 0.006 М HClO₄ (A), MeCN (B). Для разделения компонентов использован градиентный режим элюирования (0−40 мин 5−100% В, 40−43 мин 100% В) со скоростью 100 мкл/мин при температуре 35°С и УФ-детектировании при 270 нм. Расчет содержания соединений проводили с использованием коммерчески доступных образцов сравнения (Sigma-Aldrich). Содержание маркерных компонентов в средстве: глицирризиновая кислота 2.06±0.04%, байкалин 1.85±0.04%, протопин 1.09±0.03%, мангиферин 0.68±0.02%, сумма тифанеозида и нарциссина 0.27±0.01%.

Вычисление LD50 проводилось по методу Кербера с применением пробитанализа. Определение острой токсичности по методу Кербера на белых мышах [7] осуществлялось при однократном внутрибрюшинном введении фитополиэкс-

тракта в группах по 8 особей в диапазоне доз: от 3 000 до 6 000 мг/кг. Все испытуемые дозы фитосредства растворяли в дистиллированной воде до необходимого объема, составляющего 1,0 мл / 100 г массы животного. В дополнение к вычислению LD50 методом Кербера [7] был применен пробит-анализ, предложенный D.J. Finney [9, 10].

Результаты исследования

При определении острой токсичности в течение первых суток наблюдали поведение белых мышей, их активность, потребление пищи и воды. Для оценки токсичности комплексного фитоэкстракта рассматривали общее состояние белых мышей, характер клинических проявлений интоксикации, возможный летальный исход и морфологические изменения внутренних органов экспериментальных животных (табл. 1).

При введении группам белых мышей изучаемого комплексного фитосредства в дозах 3 000, 3 500, 4 000 мг/кг общее состояние животных в данных группах не страдало, они оставались активными, сохраняли аппетит. При введении фитополиэкстракта в дозе 4 500 мг/кг отмечалось незначительное снижение активности у трех мышей из 8 через 4 часа после введения исследуемого фитосредства, в дальнейшем признаки интоксикации наросли, два животных отказались от приема корма и в дальнейшем через 12 часов погибли.

При введении изучаемого фитополиэкстракта группам животных в дозах 5 000, 5 500 мг/кг состояние мышей нарушалось в более ранние сроки — через 3 часа: отмечалось ограничение подвижности, вялость, слабая реакция на внешние раздражители, отказ от приема корма, животные предпочитали сидеть группами рядом с водой. Через два часа после введения белым мышам исследуемого фитополиэкстракта в дозе 6 000 мг/кг у животных движения стали скованными, мыши лежали с закрытыми глазами. Через три часа животные из названной группы были полностью неподвижны. Участились акты дефекации, по истечении 5 часов после введения фитосредства помет потерял каловый характер: стал водянистым с большим количеством слизи. Гибель животных в группе с дозировкой 6 000 мг/кг наблюдалась на 6-й и 7-й час после введения. В группе с дозой 5 500 мг/кг введенного средства через 8–12 часов погибли три животных и далее в течение первых суток еще три животных.

Погибших экспериментальных животных вскрывали и исследовали органы микроскопически: наблюдались гемодинамические нарушения в виде полнокровия сосудов с явлениями стаза в легких, печени, почек, головном мозге. Миокард, эпикард не имели видимых изменений. Легкие полнокровны, отечные. Печень обычных размеров, полнокровна, паренхима рыхлая. Слизистая желудка гиперемирована, в просвете слизь. Кишечник заполнен слизью, почки полнокровны, корковый слой дифференцируется. Головной мозг серого цвета, сосуды оболочки расширены, полнокровны. Гибель животных при остром отравлении наступила в результате сердечно-легочной недостаточности. Результаты определения острой токсичности приведены в таблице 1.

Доза, мг/кг	3 000	3 500	4 000	4 500	5 000	5 500		6 000
Выжило экстракта	8	8	8	6	4	2		0
Погибло мышей	0	0	0	2	4	6		8
Z	0	0	1			3	5	7
D	500	500	500			500	500	500
Z*D	0	0	500			1 500	2 500	3 500
	$\Sigma(Z*D)=8000$							

D — интервал между двумя смежными дозами;

Z — среднее арифметическое из двух значений числа тест-объектов, у которых проявился положительный эффект при воздействии каждой из двух смежных доз;

n — число тест-объектов в группе.

 $LD50 = LD100 - \Sigma(Z*D)/n$

LD50 = 6000 - 8000/8 = 5000 MG/kg.

Полученные результаты, характеризующие острую токсичность комплексного фитоэкстракта, обработаны с использованием формул в среде Visual Basic в MS Excel, данные представлены в таблице 2.

Tаблица 2 Оценка показателей острой токсичности методом пробит-анализа

D, мг/кг	3 000	3 500	4 000	4 500	5 000	5 500	6 000
Выжило	8	8	8	6	4	2	0
Погибло	0	0	0	2	4	6	8
X (logD)	3.477	3.544	3.602	3.653	3.698	3.740	3.778
Эффект в проби-	0	0	0	4,33	5,0	5,67	7,33
тах Ү							

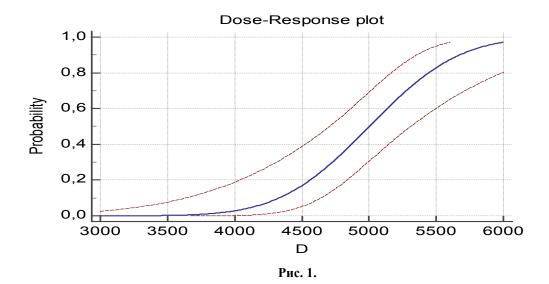

В дальнейшем данные острой токсичности комплексного фитоэкстракта (LC) подвергались программной статистической обработке с доверительным интервалом и приведены в таблице 3.

Таблица 3 Значения LD комплексного фитоэкстракта на основании пробит-анализа

Вероятность развития эффек- та	D, мг/кг (доза)	СІ 95% (доверит	СІ 95% (доверительный интервал)		
0,010	3782,69062	2632,93526	4229,23950		
0,020	3925,55843	2898,21726	4333,34087		
0,025	3974,71066	2989,07284	4369,56792		
0,05	4139,85848	3292,28538	4493,34351		
0,10	4330,26335	3636,22888	4641,68998		
0,20	4560,82872	4038,50532	4835,53813		

0,25	4648,42153	4184,63371	4915,88012
0,50	5001,91837	4705,15877	5309,31779
0,75	5355,41521	5085,53147	5842,90782
0,80	5443,00802	5163,99464	5990,91503
0,90	5673,57339	5354,73438	6396,29988
0,95	5863,97826	5501,70268	6741,62156
0,975	6029,12608	5624,73427	7045,57810
0,980	6078,27831	5660,79188	7136,60312
0,990	6221,14612	5764,49557	7402,28279

С использованием приведенных значений выполнено построение графика доза-эффект (рис. 1) с 95%-ным доверительным интервалом. В результате пробит-анализа, проведенного с помощью введения данных в MS Excel с дальнейшим расчётом средствами Visual Basic, выяснено, что LD50 комплексного растительного лекарственного средства составляет 5 002 мг/кг. Сравнивая результаты двух методов определения LD50: методом Кербера и пробит—анализа, можно констатировать получение аналогичных результатов при изучении острой токсичности и как следствие возможность использования любого из них, так как различия не превышают 0,1% в зависимости от метода, взятого за эталон.

Выводы

Результаты проведенных исследований острой токсичности изучаемого фитополиэкстракта позволяют отнести средство к относительно безвредным веществам по действующей классификации на основании использования двух методов: Кербера и пробит-анализа [7].

Литература

1. Гастроэнтерология. Клинические рекомендации / под ред. В. Т. Ивашкина. М.: Гэотар-Медиа, 2008. 704 с.

- 2. Инфекционные болезни: национальное руководство / под ред. Н. Д. Ющука, Ю. Я. Венгерова. М.: Гэотар-Медиа, 2010. 1056 с.
- 3. Лесиовская Е. Е. Доказательная фитотерапия. М.: Медицина, 2014. Ч. 1. 214 с., ч. 2. 684 с.
- 4. Никонов Г. К., Мануйлов Б. М. Основы современной фитотерапии. М.: Медицина, 2005. 520 с.
- 5. Николаев С. М. Фитофармакотерапия и фитофармакопрофилактика заболеваний. Улан-Удэ, 2012. 286 с.
- 6. Рекомендации по диагностике и лечению взрослых больных гепатитом С / Н. Д. Ющук и [и др.]. Изд. 3, испр. и доп. М.: Гэотар-Медиа, 2017. 96 с.
- 7. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / под ред. Р. У. Хабриева. М., 2012. 832 с.
- 8. Шерлок Ш., Дули Д. Заболевания печени и желчных путей: пер. с англ. / под ред. 3. Г. Апросиной, Н. А. Мухина. М.: Гэотар-мед, 2002. 864 с.
- 9. Hayes, W. J. and C. L. Kruger(eds). Handbook of Haye's principles and methods of toxicology. 2014. 6th Edition. New York, NY, USA: CRC Press, Boca Raton.
- 10. Probit Analysis, 3^{rd} ed. By D. J. Finney, Cambridge University Press, 32 E. 57^{th} St., New York, Ny 10022, 1971. xv + 333 p.

DEFINING ACUTE TOXICITY OF NEW COMPLEX PLANT SUPPLEMENT IN MICE

Elena A. Ubeeva
Post-Graduate Student,
Medical Institute, Buryat State University
36a, Oktyabrskaya st., Ulan-Ude, Russia
Tel. +73012448255
E-mail: ubeeva.ip@mail.ru

Elena A. Botoeva
Candidate of Medical Sciences,
Head of Department of Obstetrics and Gynecology with a Course of Pediatrics
Medical Institute, Buryat State University
36a, Oktyabrskaya st., Ulan-Ude, Russia
Tel.: +73012448255
E-mail: botoeva.ea@mail.ru

*Iraida P. Ubeeva*Doctor of Medical Sciences, Professor,
Medical Institute, Buryat State University
36a, Oktyabrskaya st., Ulan-Ude, Russia

Professor at Chair of Clinical Pharmacology, Irkutsky State Institute for Postgraduate Education, Russian Medical Academy of Continuing Professional Education 100, Yubileyny, Irkutsk, 664079 Russia E-mail: ubeeva.ip@mail.ru Sergey M. Nikolaev Doctor of Medical Sciences, Professor, Medical Institute, Buryat State University 36a, Oktyabrskaya st., Ulan-Ude, Russia

Professor at Chair of Clinical Pharmacology, Irkutsky State Institute for Postgraduate Education, Russian Medical Academy of Continuing Professional Education 100, Yubileyny, Irkutsk, 664079 Russia E-mail: tatur75@mail.ru

Elena. N. Tsybikova Candidate of Medical Sciences, Medical Institute, Buryat State University 36a, Oktyabrskaya st., Ulan-Ude, Russia

Tel.: +73012448255

E-mail: etsybikova@mail.ru

In an experiment of determining the acute toxicity of the new complex plant supplement consisting of Hypecoum erectus L., Hedysarum dauricum, Glycyrhhiza uralensis Fischer, Calendula officina-lis and Scutellaria baicalensis in mise by means of two methods: Kerber and probit- analysis similar results were obtained.

Keywords: complex medicinal plant supplement, acute toxicity, probit analysis.