УДК 541.264: 537.2

doi: 10.18101/2306-2363-2017-1-31-36

КОЭФФИЦИЕНТ ПОПЕРЕЧНОЙ ДЕФОРМАЦИИ И НЕЛИНЕЙНОСТЬ СИЛЫ МЕЖАТОМНОГО ВЗАИМОДЕЙСТВИЯ

© Мантатов В. В.

доктор физико-математических наук, доцент, Бурятский государственный университет Россия, 670000, г. Улан-Удэ, ул. Смолина, 24a E-mail: manv999@bsu.ru

© Бадмаев С. С.

кандидат технических наук, доцент, Бурятский государственный университет Россия, 670000, г. Улан-Удэ, ул. Смолина, 24a E-mail: sayan75@mail.ru

© Сандитов Д. С.

доктор физико-математических наук, профессор Бурятский государственный университет Россия, 670000, г. Улан-Удэ, ул. Смолина, 24a E-mail: sanditov@bsu.ru

Рассмотрена взаимосвязь параметра Грюнайзена и коэффициента Пуассона (коэффициента поперечной деформации) кристаллических и стеклообразных твердых тел. Показано, что коэффициент Пуассона μ однозначен функции параметра Грюнайзена γ_D . Сопоставление результатов расчетов показывает однозначную связь между гармоничной и ангармоничной γ_D величины, что не характерно для теории упругости.

Ключевые слова: ангармонизм колебаний решетки, коэффициент Пуассона, параметр Грюнайзена, теория упругости, поперечная деформация, стекла, межатомное взаимодействие

Коэффициент Пуассона μ , который иногда называют коэффициентом поперечной деформации, по определению равен отношению относительной поперечной деформации тела $\varepsilon_z = \Delta r/r$ к его относительному продольному удлинению $\varepsilon_x = \Delta l/l$ при одноосном растяжении

$$\mu = -\frac{\Delta r/r}{\Delta l/l}.\tag{1}$$

Согласно работе [1], у изотропных твердых тел диапазон разрешенных значений μ определяется по известной формуле теории упругости из условия положительности упругих модулей ($B \ge 0$, $G \ge 0$)

$$\mu = \frac{1}{2} \left(\frac{3B - 2G}{3B + G} \right) \tag{2}$$

В соответствии с этим соотношением при равенстве нулю модуля объемного сжатия B=0 коэффициент Пуассона равен нижнему пределу $\mu=-1$, а когда модуль сдвига равен нулю G=0, получаем верхний предел $\mu=\frac{1}{2}$.

Таким образом, по Ландау и Лифшицу величина μ может меняться в интервале

$$-1 \le \mu \le 0.5$$
 (3)

Разберем связь коэффициента поперечной деформации μ с параметром Грюнайзена γ_D , который входит в уравнение состояния твердых тел и служит мерой ангармонизма колебаний решетки и нелинейности силы межатомного взаимодействия. Грюнайзен вывел формулу:

$$\gamma_D = \frac{\beta BV}{C_V},\tag{4}$$

с помощью которой можно вычислять γ_D из экспериментальных данных о коэффициенте объемного теплового расширения β , изотермическом модуле объемного сжатия B, молярном объеме V и молярной теплоемкости C_V .

Наряду с уравнением Грюнайзена (4) предложены другие способы расчета γ_D . Опираясь на теорию упругости, молекулярную акустику и термодинамику, Леонтьеву [2] удалось усреднить частоту колебаний решетки и непосредственно из определения параметра Грюнайзена вывести следующее соотношение для величины γ_D

$$\gamma_D = \frac{3}{2} \left(\frac{B_A}{\rho v_K^2} \right),\tag{5}$$

где B_A — адиабатический модуль объемного сжатия, ρ — плотность, v_K — средняя квадратичная скорость, квадрат которой является инвариантом суммы квадратов скоростей распространения продольных (v_L) и поперечных (v_S) упругих волн

$$v_K^2 = \frac{v_L^2 + 2v_S^2}{3}.$$
 (6)

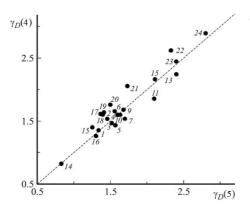


Рис. 1. Сравнение значений параметра Грюнайзена, рассчитанных по уравнению Грюнайзена γ_D (4) и по формуле Леонтьева γ_D (5). Номера точек соответствуют номерам твердых тел в табл. 1.

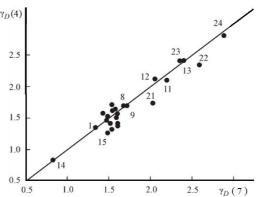


Рис. 2. Сравнение значений параметра Грюнайзена, рассчитанных по уравнению Грюнайзена γ_D (4) и по формуле Беломестных-Теслевой (7). Номера точек соответствуют номерам твердых тел в табл. 1.

Таблица 1 Сопоставление результатов расчета параметра Грюнайзена γ_D по уравнениям (4), (5) и (7) [3, 4]

No	Элементы и	μ	Параметр γ_D по уравнению					
	соединения	-	Грюнайзена	Леонтьева	Беломестных-			
			(4)	(5)	Теслевой (7)			
1	LiF	0.214	1.34	1.35	1.34			
2 3	NaCl	0.243	1.46	1.53	1.47			
	LiCl	0.245	1.52	1.47	1.48			
4	KC1	0.259	1.60	1.60	1.54			
5	NaF	0.234	1.57	1.44	1.43			
6	NaBr	0.270	1.56	1.65	1.60			
7	LiBr	0.256	1.70	1.53	1.53			
8	KBr	0.283	1.68	1.67	1.67			
9	Fe	0.292	1.68	1.68	1.72			
10	KI	0.265	1.63	1.60	1.57			
11	Co	0.357	2.10	1.85	2.19			
12	Al	0.340	2.11	2.16	2.05			
13	Ag	0.379	2.40	2.24	2.40			
14	Be	0.034	0.83	0.83	0.82			
15	Y	0.245	1.25	1.40	1.48			
16	$NaNO_3$	0.257	1.31	1.27	1.53			
17	$NaClO_3$	0.270	1.37	1.61	1.60			
18	Th	0.254	1.40	1.61	1.52			
19	Mg	0.270	1.41	1.64	1.60			
20	RbBr	0.267	1.50	1.76	1.59			
21	Та	0.337	1.73	2.05	2.03			
22	AgBr	0.396	2.33	2.65	2.58			
23	Pd	0.374	2.40	2.44	2.35			
24	Au	0.420	2.80	2.90	2.88			

На рис. 1 сопоставляются результаты расчета γ_D по уравнениям Грюнайзена (4) и Леонтьева (5) для ряда твердых тел (табл. 1) [3]. Как видно, наблюдается удовлетворительное согласие между этими соотношениями. Отклонения от данной корреляции для некоторых твердых тел обусловлены, повидимому, главным образом разбросом значений γ_D , полученных разными исследователями.

Используя выражение для модуля сдвига $G = \rho v_S^2$ и формулу (6) для v_K^2 , преобразуем уравнение Леонтьева (5)

$$\gamma_D = \frac{3}{2} \left(\frac{B_A}{\rho v_S^2} \right) \frac{v_S^2}{v_K^2} = \frac{3}{2} \left(\frac{B_A}{G} \right) \frac{3}{\left(v_L / v_S \right)^2 + 2}.$$

Далее, с помощью известных выражений теории упругости [1]

$$\frac{B}{G} = \frac{2}{3} \left(\frac{1+\mu}{1-2\mu} \right), \quad \left(\frac{\upsilon_L}{\upsilon_S} \right)^2 = \left(\frac{2-2\mu}{1-2\mu} \right)$$

в приближении $B_{\scriptscriptstyle A}\cong B_{\scriptscriptstyle }$ приходим к формуле Беломестных-Теслевой [10]

Таблица 2 Упругие свойства и параметр Грюнайзена натриевоалюмосиликатных стекол (использованы данные [6])

No	Состав по синтезу, мол. %		$\rho, 10^{-3}$	v_L ,	v_{S} ,	$B, 10^{-8}$	μ	γ_D	
	Na ₂ O	Al_2O_3	SiO ₂	$\kappa\Gamma/M^3$	м/с	м/с	Па	-	
1	15	0	85	2.339	5430	3340	342	0.196	1.28
2	15	5	80	2.358	5570	3390	370	0.206	1.31
3	15	10	75	2.410	5697	3510	386	0.194	1.26
4	15	15	70	2.465	5737	3469	416	0.212	1.34
5	15	20	65	2.428	5850	3540	425	0.211	1.34
6	15	25	60	2.472	6000	3568	470	0.226	1.40
7	25	0	75	2439	5280	3140	359	0.226	1.40
8	25	5	70	2.455	5480	3240	394	0.231	1.41
9	25	10	65	2.461	5610	3330	411	0.228	1.40
10	25	15	60	2.480	5640	3350	418	0.227	1.39
11	25	20	55	2.470	5680	3450	405	0.208	1.32
12	25	25	50	2.499	5790	3490	432	0.215	1.35
13	25	30	45	2.519	6026	3556	490	0.233	1.43
14	35	0	65	2.497	5340	3070	398	0.253	1.52
15	30	5	65	2.486	5500	3200	413	0.244	1.47
16	20	15	65	2.450	5670	3490	390	0.195	1.28
17	17.5	17.5	65	2.447	5746	3458	418	0.216	1.35

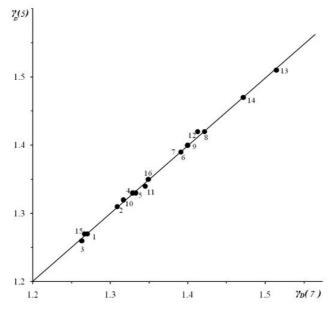


Рис. 3. Сравнение значений параметра Грюнайзена, рассчитанных по уравнению Леонтьева (5) и по формуле Беломестных-Теслевой (7), для натриевоалюмосиликатных стекол. Номера точек соответствуют номерам стекол в табл. 2.

$$\gamma_D = \frac{3}{2} \left(\frac{1+\mu}{2-3\mu} \right), \tag{7}$$

которая была получена авторами [3] из иных исходных посылок.

Эта формула привлекательна тем, что позволяет рассчитывать γ_D по данным только о коэффициенте Пуассона μ . Оценка γ_D с ее помощью для многих металлов, ионных и молекулярных кристаллов удовлетворительно согласуется с расчетом по уравнению Грюнайзена (4) (табл. 1) [4, 5]. Рис. 2 подтверждает согласие между уравнениями Беломестных-Теслевой и Грюнайзена.

На рис. 3 приводится зависимость параметра Грюнайзена γ_D , рассчитанного по формуле Леонтьева (5), от функции коэффициента Пуассона по Беломестных-Теслевой (3/2)(1+ μ)/(2-3 μ) для натриевоалюмосиликатных стекол с различным содержанием окислов (табл. 2 [5]). Видно, что уравнения Леонтьева (5) и Беломестных-Теслевой (7) хорошо согласованы с экспериментальными данными. Такие же результаты получаются для других стекол.

Таким образом, коэффициент Пуассона μ оказывается однозначной функцией параметра Грюнайзена γ_D .

Отмечая согласие формулы Беломестных-Тесловой (7) с уравнением Грюнайзена (4), необходимо обратить внимание на тот факт, что эта формула однозначно связывает между собой гармоническую (линейную) μ и ангармоническую (нелинейную) γ_D величины, что не характерно для теории упругости.

Известны попытки качественного объяснения наличия взаимосвязи между линейными и нелинейными величинами [6].

Работа выполнена при финансовой поддержке Министерства образования $P\Phi$ (грант № 1932).

Литература

- 1. Ландау Л. Д., Лифшиц Е. М. Теория упругости. М.: Наука. 1965. 204 с.
- 2. Леонтьев К. Л. О взаимосвязи между упругими и тепловыми свойствами твердых тел // Акустический журнал. 1981. Т. 47, Вып. 4. С. 554–561.
- 3. Беломестных В. Н., Теслева Е. П. Взаимосвязь ангармонизма и поперечной деформации квазиизотропных поликристаллических тел // ЖТФ. 2004. Т. 74, Вып. 8. С. 140–142.
- 4. Сандитов Д. С., Беломестных В. Н. Взаимосвязь параметра теории упругости и усредненный модуль упругости твердых тел // ЖТФ. 2011. Т. 81, Вып. 11. C 77–81
- 5. Лившиц В. Я., Теннисон Д. Г., Гукасян С. Б., Костанян А. К. Акустические и упругие свойства стекол системы $Na_2O-Al_2O_3-SiO_2$ // Физика и химия стекла. 1982. Т. 8, № 6. С. 688–693.
- 6. Сандитов Д. С. Коэффициент поперечной деформации стеклообразных твердых тел. Германия: международный издательский дом LAP Lambert Academic Publishing. 2016. 72 р.

THE COEFFICIENT OF TRANSVERSE DEFORMATION AND NONLINEAR FORCES OF INTERATOMIC INTERACTION

Mantatov V. V.

Doctor of Physical and Mathematical Sciences, associate Professor, Buryat State University 24a Smolina Str., Ulan-Ude, 670000, Russia E-mail: manv999@bsu.ru

Badmaev S. S.

Candidate of Engineering Sciences, associate Professor, Buryat State University 24a Smolina Str., Ulan-Ude, 670000, Russia E-mail: sayan75@mail.ru

Sanditov D. S.

Doctor of Physical and Mathematical Sciences, Professor, Buryat State University 24a Smolina Str., Ulan-Ude, 670000, Russia E-mail: sanditov@bsu.ru

The interrelation between the Grüneisen parameter and the Poisson ratio (the coefficient of transverse deformation) of crystalline and glassy solids is considered. It is shown that the Poisson's ratio μ is single-valued for the function of the Gruneisen parameter γ_D . Comparison of the results of calculations shows an unambiguous relationship between the harmonious and anharmonic γ_D values, which is not typical for the theory of elasticity

Keywords: anharmonicity of lattice vibrations, Poisson's ratio, Grüneisen parameter, elasticity theory, transverse deformation, glasses, interatomic interaction.