Научные журналы
Бурятского государственного университета
имени Доржи Банзарова
РУСENG
Вход

Вестник БГУ. Химия. Физика

Библиографическое описание:
Батхишиг Д.
,
Энхбаяр П.
СПИРАЛЬНЫЕ ПАРАМЕТРОВ РЕГУЛЯРНЫХ π-СПИРАЛЕЙ В БЕЛКАХ // Вестник БГУ. Химия. Физика. - 2016. №2. . - С. 10-17.
Заглавие:
СПИРАЛЬНЫЕ ПАРАМЕТРОВ РЕГУЛЯРНЫХ π-СПИРАЛЕЙ В БЕЛКАХ
Финансирование:
Коды:
DOI: 10.18101/2306-2363-2016-2-3-10-17УДК: 579.519.6
Аннотация:
α-Спираль, 310-спираль, π-спираль и -спираль были отмечены в белковых структурах. На них приходится 32% от остатка, 4%, 0.3% и 0.2%, соответственно. Однако эти проценты зависят по разрешения разрешающих структур и способа для присвоения вторичной структуры. Отобранный набор данных, содержащий 2901 белковые цепи с менее, чем 25% последовательной идентичности и разрешением  1.6 Å (R-значение  0.25), был использован в данном анализе. Вторичные структуры присвоений выполняются DSSP, STRIDE и SECSTR для π-спиралей.
HELFIT программа определяет спиральные параметры-высоту тона, аминокислотный остаток на виток, радиус, и направленность и p = rmsd/(N−1)1/2 для π-спиралей, где RMSD является среднеквадратичным отклонением от оптимальной подобранной спирали и N является длиной спирали. р-значение оценивает спиральную регулярность и все регулярные π- спирали с р = 0.10Å были определены. Спиральные параметры π-спиралей сопоставлены со спиральными параметрами канонических π-спиралей и другим видам белковых спиралей.
Ключевые слова:
310-спираль, α-спираль, π-спираль, спиральные параметры, регулярные спирали, белковые структуры, белковые цепи.
Список литературы:
1. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins // Prog. Biophys. Mol. Biol. - 1984. - V. 44. - P. 97-179.

2. Barlow D. J., Thornton J. M. Helix geometry in proteins // J. Mol. Biol. - 1988. - V. 201. - P. 601–619.

3. Donohue J. Hydrogen Bonded Helical Configurations of the Polypeptide Chain // Pro. Nat. Acad. Sci. USA. - 1953. - V. 39. - P. 470–478.

4. Duneau J. P., Genest D. and Genest M. Detailed description of an alpha helix-pi bulge transition detected by molecular dynamics simulations of the p185(c-erbB2) V659G transmembrane domain // J. Biomol. Struct. Dyn. - 1996. - V. 13. - P. 753-769.

5. Enkhbayar P., Boldgiv B. and Matsushima N. ω-Helices in Proteins // Protein J. - 2010. - V. 29. - P. 242-249.

6. Enkhbayar P., Damdinsuren S., Osaki M., Matsushima N. HELFIT: Helix fitting by a total least squares method // Comput. Biol. Chem. - 2008. - V. 32. - P. 307–310.

7. Frishman D., Argos P. Knowledge-based protein secondary structure assignment // Proteins. - 1995. - V. 23. - P. 566-579.

8. Fodje M. N., Al-Karadaghi S. Occurrence, conformational features and amino acid propensities for the pi-helix // Protein Eng. - 2002. - V. 15. - P. 353–358.

9. Hobohm U., Scharf M., Schneider R., Sander C. Selection representative set of protein structures // Protein Sci. - 1992. - V. 1. - P. 409–417.

10. IUPAC-IUB, Commission on Biochemical Nomenclature // J. Mol. Biol. - 1970. - V. 52. - P. 1–17.

11. Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features // Biopolymers. - 1983. - V. 22. - P. 2577–2637.

12. Kovacs H., Mark A. E., Johansson J. and van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water // J. Mol. Biol. - 1995. - V. 247. - P. 808-822.

13. Lee K. H., Benson D. R. and Kuczera K. Transitions from α to π helix observed in molecular dynamics simulations of synthetic peptides // Biochemistry. - 2000. - V. 39. - P. 13737-13747.

14. Low B. W., Baybutt R. B. The pi-helix - a hydrogen bonded configuration of the polypeptide chain // J. Am. Chem. Soc. - 1952. - V. 74. - P. 5806-5814.

15. Pauling L., Corey R. B., Branson H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain // Proc. Nat. Acad. Sci. USA. - 1951. - V. 37. - P. 205–211.

16. Perutz M. F. New X-Ray Evidence on the Configuration of Polypeptide Chains // Nature. - 1951. - V. 167. - P. 1053–1054.

17. Ramachandram G. N and Sasisekharan V. Conformation of polypeptides and proteins // Adv. Protein Chem. - 1968. - V. 23. - P. 283-437.

18. Rohl C. A and Doing A. J. Models for the 3(10)-helix/coil, pi-helix/coil, and alpha-helix/3(10)-helix/coil transitions in isolated peptides // Protein Sci. - 1996. - V. 5. - P. 1687-1696.

19. Weaver T. M. The pi-helix translates structure into function // Protein Sci. - 2000. - V. 9. - P. 201–206.

20. Manoj Tyagi, Aure lie Bornot, Bernard Offmann and Alexandre G. de Brevern. Analysis of loop boundaries using different local structure assignment methods // Protein science. - 2009. - V. 18. - P. 1869-1881.