БИОЛОГИЯ

Научная статья УДК 579.26

DOI: 10.18101/2542-0623-2024-2-6-12

ИССЛЕДОВАНИЕ ИЗОТОПНОГО СОСТАВА УГЛЕРОДА ¹³С/¹²С ЗАСОЛЕННЫХ ПОЧВ СЕЛЕНГИНСКОГО СРЕДНЕГОРЬЯ

В. Б. Дамбаев, Т. В. Давыдова

© Дамбаев Вячеслав Борисович

кандидат биологических наук, Институт общей и экспериментальной биологии СО РАН Россия, 670047, г. Улан-Удэ, ул. Сахьяновой, 6 astra78plus@mail.ru

© Давыдова Туяна Владимировна

кандидат биологических наук, Институт общей и экспериментальной биологии СО РАН Россия, 670047, г. Улан-Удэ, ул. Сахьяновой, 6 maust678@mail.ru

Аннотация. С использованием методов изотопной масс-спектрометрии изучено влияние глюкозы на микробную деструкцию органического вещества засоленных почв Селенгинского среднегорья. Различия в изотопном составе глюкозы (δ^{13} C -10,57%) и органического вещества (δ^{13} C -26,55%) позволили рассчитать потоки диоксида углерода (CO_3), образовавшиеся при их микробной деструкции в почве.

Наибольшее количество выделившегося ${\rm CO}_2$ при внесении глюкозы в почву наблюдалось в первые 4 часа опыта, что в 12 раз больше, чем скорость деструкции органического вещества до внесения глюкозы.

Наибольшее количество выделившейся углекислоты было отмечено в первые 4 часа опыта после внесения глюкозы в почву, а скорость минерализации органического вещества увеличилась 12 раз.

Изотопный состав CO_2 со значением -11,08 % был отмечен при 8-часовой инкубации. $\delta^{13}\mathrm{C}$ CO_2 в проведенном опыте наследует $\delta^{13}\mathrm{C}$ органических продуктов, используемых микроорганизмами в качестве субстратов. Различие в изотопном составе вносимой $\delta^{13}\mathrm{C}$ экзогенной глюкозы и органического вещества может быть использовано как изотопная метка для определения происхождения CO_2 , образующейся при минерализации растительных остатков.

Ключевые слова: органическое вещество, карбонаты, микробная деструкция, стабильные изотопы углерода (δ^{13} C), CO₂.

Благодарности

Работа выполнена в рамках темы государственного задания № 121030100229-1.

Для цитирования

Дамбаев В. Б., Давыдова Т. В. Исследование изотопного состава углерода ¹³С/¹²С засоленных почв Селенгинского среднегорья // Природа Внутренней Азии. Nature of Inner Asia. 2024. № 2(28). С. 6–12. DOI: 10.18101/2542-0623-2024-2-6-12

Введение

Почвенное плодородие является неотъемлемой частью цикла углерода, обеспечивающееся трансформацией органического вещества, так как органические соединения являются хранилищем энергии в наземных биомах [Song et al., 2017].

Важное значение для характеристики циклов углерода в биосфере имеет оценка потоков ${\rm CO}_2$ из почв. По активности ${\rm CO}_2$ в почвах можно судить о трансформации органического вещества [Шилова, 2014]. Оценка потоков углерода в почвенных системах проводится с использованием глюкозы как легко минерализуемого органического соединения, которое в природных условиях поступает в почву в составе корневых выделений [Yanardağ et al., 2017]. Внесение органических и минеральных веществ в почву оказывает определенное воздействие на микробиологические процессы [Зякун, Дилли, 2011]. Главное значение имеет почвенное органическое вещество, которое определяет состав и структуру микробных сообществ [Subedi et al., 2016; Wang et al., 2016].

В результате минерализации растительных остатков гетеротрофными микроорганизмами образуются углекислота, органические метаболиты и микробная биомасса с изотопным составом углерода δ^{13} С использованных продуктов. Количество δ^{13} С СО₂, выделившейся из почвы в результате деструкции растительных остатков, было использовано для того, чтобы проследить минерализацию и других веществ, попадающих в почву.

Цель работы — влияние глюкозы на микробную деструкцию органических веществ и оценка продуцирования δ^{13} С CO_2 в засоленных почвах Селенгинского среднегорья.

Объекты и методы

Объектами исследования являлись прибрежные засоленные почвы озера Белое $(51^{\circ}32'86''$ с. ш. $107^{\circ}02'53''$ в. д., высота 538 м над ур. м.).

Почвенные образцы были отобраны с верхнего слоя (0–20 см) почвы на участках P1, P2, P3 на расстоянии 10 м друг от друга вверх по террасе на северовосточной оконечности озера Белое.

Содержание органического вещества в почве определяли методом мокрого сжигания [Воробьева, 1998]. Содержание карбонатов определяли по методу Хитрова [Хитров, 1984]. Продуцирование ${\rm CO_2}$ почвой определяли абсорбционным методом [Шарков, 1984].

Соотношение 13 С/ 12 С определяли на масс-спектрометре FINNIGAN Breath MAT Plus (ИБФМ РАН, г. Пущино).

Характеристики изотопного состава углерода анализируемых образцов представляли в виде величин $\delta^{13}C$ (‰), которые рассчитывали согласно общепринятому выражению:

$$\delta^{13}C_{obp} = ((R_{obp}/R_{cr})-1) \times 1000 (\%)$$

где $R^{\text{обр}}$ и $R^{\text{ст}}$ — отношения распространенности изотопов углерода [13 C]/[12 C] в образце и стандарте PDB [Slater, Preston, Weaver, 2001]. Знак «+» означает, что образец более обогащен тяжелым изотопом, чем стандарт, знак «-» — обеднен. Стандартная ошибка измерений изотопных характеристик $\pm 0,2$ %.

Материально-изотопный баланс для органического вещества (OB) и внесенной глюкозы (глю) в почву проводили, используя уравнение:

$$\delta^{13} C_{_{OB}} Q_{_{OB}} + \delta^{13} C_{_{\Gamma JIIO}} Q_{_{\Gamma JIO}} = \delta^{13} C_{_{(OB+\Gamma JIO)}} (Q_{_{\Gamma JIO}} + Q_{_{OB}}), \, (1)$$

где δ^{13} С_{ов} и δ^{13} С_(ов+глю) — содержание изотопа 13 С в органическом веществе почвы до и после внесения глюкозы в почву;

 $\delta^{13}C_{_{\Gamma\!\Pi\!10}}$ — изотопный состав углерода глюкозы; $Q_{_{\Gamma\!\Pi\!10}}$ и $Q_{_{0B}}$ — количество органического вещества и глюкозы в почвенных образцах соответственно.

Используя (1), долю CO_2 (F), которая образовалась при минерализации органического вещества после внесения глюкозы в почву, рассчитывали с помощью формулы (2):

$$F = (\delta^{13}C_{(OB^{+}\Gamma JIO)} - \delta^{13}C_{\Gamma JIO})/(\delta^{13}C_{\Gamma JIO} - \delta^{13}C_{OB}), (2)$$

где $\delta^{13}C_{_{OB}}$ и $\delta^{13}C_{_{(OB+ГЛЮ)}}$ отражают количество изотопа ^{13}C в $CO_{_2}$, продуцируемое в почве до и после внесения глюкозы; $\delta^{13}C_{_{\GammaЛЮ}}$ — изотопный состав углерода глюкозы.

Таким образом, разницу между количеством углерода ${\rm CO_2}$, продуцируемым при минерализации органического вещества в образцах почвы с глюкозой и в контроле, отнесенную к количеству ${\rm CO_2}$ в контроле (в процентах), использовали для оценки ПЭ глюкозы (3):

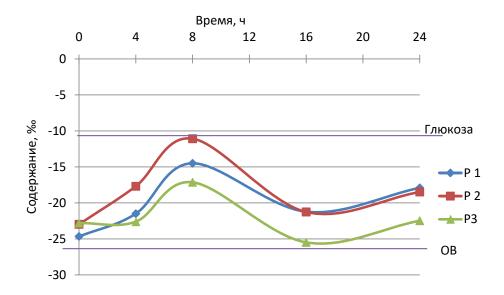
$$\Pi \ni = [FC_{(OB^{+}IJIIO)} - C_{OB}]/C_{OB}]100\%, (3)$$

где $C_{\text{(глю+ов)}}$ — суммарное количество углерода CO_2 , образующееся при минерализации глюкозы и органического вещества в почве с глюкозой; $FC_{\text{(глю+ов)}}$ — количество углерода CO_2 , образующееся при минерализации органического вещества в почве с добавкой глюкозы и рассчитанное с учетом (2).

Результаты и их обсуждение

Содержание органического вещества в прибрежных засоленных почвах озера Белое невелико. В верхних 0–20 см изученных почв она варьировала в пределах 1,05–1,54% воздушно-сухой навески. Значение рН водной вытяжки колебалось от 7,9 до 8,4 (табл. 1).

Таблица I Физико-химическая характеристика засоленных почв Селенгинского среднегорья


Ключевой участок	Влажность,	рН	Содержание карбонатов, %	Содержание С _{орг} , %
P1	6,5	8,4	0,17	1,13
P2	6,3	7,9	1,2	1,05
Р3	12,5	8,2	12,4	1,54

Среднее значение δ^{13} С органического вещества на участках P1, P2, P3 составляло -26,55‰, что характерно для С3-растительности. Наименьшее количество

карбонатов отмечено на участке P1. Вверх по минитрансекту содержание карбонатов увеличивается. Наиболее обогащена карбонатами почва участка P3, расположенная на вершине прибрежной террасы. С увеличением содержания карбонатов в почвах происходит утяжеление изотопного состава $\delta^{13}C_{\text{карб}}$ — от -16,70 до -11,74% (табл. 2).

Ключевой участок	Глубина, см	$\delta^{13}C_{\kappa ap6}$, ‰	δ¹³C OB, ‰	Увлажнение почвы 60% , δ^{13} C, $\%$
P1	0–20	-16,70	-26,19	-24,66
P2	0–20	-13,76	-26,8	-22,97
Р3	0–20	-11,74	-26,66	-22,80

Изотопный состав δ^{13} С почвенного CO_2 составлял -23,47‰ и наследовал изотопный состав органического вещества почв -26,55‰. Фракционирование изотопов углерода при микробной деструкции органического вещества составляло 3,1‰. Вносимая в почву глюкоза 1,5 мг/г с изотопным составом δ^{13} С -10,58‰ отличалась на 16‰ от углерода почвенного органического вещества. δ^{13} С CO_2 со значением -11,08‰ было отмечено при 8-часовой инкубации. Таким образом, δ^{13} С CO_2 в проведенном эксперименте наследует изотопный состав углерода δ^{13} С органических продуктов, используемых почвенными микроорганизмами в качестве субстратов (рис. 1).

 $Puc.\ 1.$ Изотопный состав $d^{13}C$ выделившейся CO_2 при внесении глюкозы в почву

Положительный прайминг-эффект составлял 264% от исходной продукции CO_2 почвы. Поэтому микробная деструкция органического вещества может быть активирована поступлением органических продуктов в почву и достигать значимых размеров.

Процесс потребления глюкозы микроорганизмами характеризовался двумя периодами и разной степенью минерализации. Высокие концентрации солей в почвах влияют на создание специфических микробных сообществ засоленных местообитаний [Сыренжапова, 2022].

Первичный период потребления глюкозы фиксировался в течение 4 часов с максимальным значением 1,68 мг ${\rm CO_2/100}$ г почвы. Во второй период после 8 часов инкубации происходило замедление скорости минерализации. Количество выделившегося ${\rm CO_2}$ из верхних слоев почвенных участков было в 12 раз больше и превышало скорость минерализации органического вещества до внесения глюкозы (табл. 3).

Ключевой участок	Глубина, см	Увлажнение почвы, 60%		Добавление глюкозы 1,5 мг на 1 г почвы			
		сут	1 ч	4 ч	8 ч	16 ч	24 ч
P1	0–20	3,36	0,14	1,68	0,78	0,33	0,20
P2	0–20	2,13	0,08	1,62	0,70	0,24	0,15
Р3	0–20	3,06	0,12	1,68	0,83	0,42	0,28

Большое количество выделившегося ${\rm CO_2}$ из ключевого участка P3 было связано с большим содержанием ${\rm C_{opr}}$ почвы. Судя по схожему характеру динамики продуцирования ${\rm CO_2}$, микроорганизмы поверхностных горизонтов одинаково откликались на внесение глюкозы.

Показано, что при внесении глюкозы в низких (до 47 мкг С/г) и высоких (4,87 мг С/г) концентрациях происходит увеличение выделения ${\rm CO_2}$. Эффект связан или с разложением внесенных соединений, или с окислением органического вещества почв [Blagodatskaya et al., 2011].

 δ^{13} С СО₂, образующийся в процессе деструкции органического вещества и вносимого субстрата (глюкоза) в почву, является чувствительным параметром воздействия и продолжительности влияния этого субстрата на биогеохимические процессы, происходящие в почве.

Заключение

Изотопный состав углерода δ^{13} С почвенных углеродсодержащих продуктов является важным показателем влияния условий среды, связанных с климатическими изменениями. Полученные данные показывают, что внесение глюкозы в почву приводит к увеличению потока CO_2 в атмосферу и способствует деструкции органического вещества. Различие в изотопном составе δ^{13} С органического вещества и глюкозы можно использовать для определения образующейся CO_2

при минерализации растительных остатков в почве. Величины δ^{13} С СО $_2$, выделившейся из почвы в процессе разложения растительных остатков, могут быть также использованы для определения разложения растительных остатков и других веществ, попадающих в почву.

Литература

- 1. Воробьева Л. А. Химический анализ почв. Москва : Изд-во МГУ, 1998. 272 с. Текст : непосредственный.
- 2. Зякун А. М., Дилли О. Использование изотопной масс-спектрометрии для оценки метаболического потенциала почвенной микробиоты // Проблемы аналитической химии: изотопная масс-спектрометрия легких газообразующих элементов / под редакцией В. С. Севастьянова. Москва, 2011. Т. 15. С. 141–167. Текст: непосредственный.
- 3. Сыренжапова А. С., Норовсурен Ж., Абидуева Е. Ю. Актиномицеты в прибрежных засоленных почвах озера Борзинское (Забайкальский край, Россия) // Экологические проблемы бассейна озера Байкал: материалы всероссийской научной конференции с международным участием (Улан-Удэ. 28 августа 1 сентября 2022 г.). Улан-Удэ, 2022. С. 107—110. Текст: непосредственный.
- 4. Хитров Б. Н. Ионно-солевой состав почв в одной навеске // Почвоведение. 1984. № 5. С. 119–127. Текст : непосредственный.
- 5. Шарков И. Н. Определение интенсивности продуцирования CO_2 почвой абсорбционным методом // Почвоведение. 1984. № 7. С. 136–143. Текст : непосредственный.
- 6. Шилова Н. А. Динамика выделения CO2 в посевах полевых культур на дерновоподзолистых и торфяных почвах // Почвоведение и агрохимия. 2014. № 1(52). С. 104–113. Текст : непосредственный.
- 7. Blagodatskaya E., Yuyukina T., Blagodatsky S., Kuzyakov Y. Three-Source-Partitioning of Microbial Biomass and of CO₂ Efflux From Soil to Evaluate Mechanisms of Priming Effects. *Soil Biol. Biochem.* 2011; 43(4): 778–786. DOI: 10.1016/j.soilbio.2010.12.011.
- 8. Slater C., Preston T., Weaver T. Stable Isotopes and the International System of Units. *Rapid Communications in Mass Spectrometry*. 2001; 15: 501–519.
- 9. Song Y., Zou Y., Wang G., Yu X. Altered Soil Carbon and Nitrogen Cycles Due to the Freezethaw Effect: A Meta-Analysis. *Soil Biol. Biochem.* 2017; 109: 35–49. DOI: 10.1016/j. soilbio.2017.01.020.
- 10. Subedi R., Taupe N., Ikovi I. et al. Chemically and Biologically-Mediated Fertilizing Value of Manure-Derived Biochar. *Sci. Total Environ.* 2016; 550: 924–933.
- 11. Wang J., Xiong Z., Yan X., Kuzyakov Y. Carbon Budget by Priming in a Biochar-Amended Soil. *Eur. J. Soil Biol.* 2016; 76: 26–34. DOI: 10.1016/j.ejsobi.2016.07.003.
- 12. Yanardağ I. H., Zornoza R., Bastida F. et al. Native Soil Organic Matter Conditions the Response of Microbial Communities to Organic Inputs with Different Stability. *Geoderma*. 2017; 295: 1–9. DOI: 10.1016/j.geoderma. 2017.02.008.

Статья поступила в редакцию 13.08.2024; одобрена после рецензирования 02.09.2024; принята к публикации 05.09.2024.

STUDY OF ¹³C/¹²C CARBON ISOTOPIC COMPOSITION IN SALINE SOILS OF THE SELENGA MID-MOUNTAIN REGION

V. B. Dambayev, T. V. Davydov

Vyacheslav B. Dambayev
Cand. Sci. (Biol.),
Institute for General and Experimental Biology SB RAS
6 Sakhyanovoy St., Ulan-Ude 670047, Russia
astra78plus@mail.ru

Tuyana V. Davydova Cand. Sci. (Biol.), Institute for General and Experimental Biology SB RAS 6 Sakhyanovoy St., Ulan-Ude 670047, Russia maust678@mail.ru

Abstract. Using isotope mass spectrometry methods, we have studied the effect of glucose on microbial degradation of organic matter in saline soils of the Selenga mid-mountain region. Differences in the isotopic composition of glucose (δ^{13} C -10,57‰) and organic matter (δ^{13} C -26,55‰) allowed us to calculate the fluxes of carbon dioxide (CO₂) formed during their microbial degradation in soil. The highest amount of CO₂ released was observed in the first 4 hours after application of glucose to the soil, which was 12 times higher than the rate of organic matter degradation before glucose application. The isotopic composition of CO₂ with a value of -11.08‰ was observed at 8-hour incubation. In the experiment δ^{13} C CO₂ inherits δ^{13} C of organic products used by microorganisms as substrates. The difference in the isotopic composition of exogenous glucose and organic matter contributed δ^{13} C can be used as an isotopic marker to determine the origin of CO₂ produced during mineralization of plant residues.

Keywords: organic matter, carbonates, microbial destruction, stable carbon isotopes (δ^{13} C), CO₂.

Acknowledgments

The study was carried out within the framework of the state assignment No. 121030100229-1.

For citation

Dambaev V. B., Davydov T. V. Study of ¹³C/¹²C Carbon Isotopic Composition in Saline Soils of the Selenga Mid-Mountain Region. *Nature of Inner Asia.* 2024; 2(28): 6–12 (In Russ.). DOI: 10.18101/2542-0623-2024-2-6-12

The article was submitted 13.08.2024; approved after reviewing 02.09.2024; accepted for publication 05.09.2024.