Научная статья УДК 544.032.6 DOI 10.18101/2306-2363-2024-4-15-23

Сравнительная оценка оптической нелинейности представителей семейства шортитоподобных двойных боратов Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu)

© Ковтунец Евгений Викторович

научный сотрудник, Байкальский институт природопользования Сибирского отделения РАН Россия, 670047, г. Улан-Удэ, ул. Сахьяновой, 6 kovtunets@binm.ru

© Субанаков Алексей Карпович

кандидат химических наук, старший научный сотрудник, Байкальский институт природопользования Сибирского отделения РАН Россия, 670047, г. Улан-Удэ, ул. Сахьяновой, 6 subanakov@binm.ru

© Спиридонова Татьяна Сергеевна

кандидат химических наук, старший научный сотрудник, Байкальский институт природопользования Сибирского отделения РАН Россия, 670047, г. Улан-Удэ, ул. Сахьяновой, 6 spiridonova@binm.ru

© Стефанович Сергей Юрьевич

доктор физико-математических наук, профессор, Московский государственный университет имени М. В. Ломоносова Россия, 119991, г. Москва, Ленинские горы, 1 s stefanovich@mail.ru

Аннотация. По керамической технологии получены двойные бораты состава $Na_3RE_2(BO_3)_3$ (RE = La, Pr, Nd, Sm, Eu). $Na_3Pr_2(BO_3)_3$ и $Na_3Eu_2(BO_3)_3$ синтезированы впервые. Соединения кристаллизуются в структурном типе шортита с пр. гр. *Amm2*, параметры их элементарных ячеек уточнены методом Ле-Бейля. С использованием порошковой методики Курца — Перри проведена оценка оптической нелинейности этих фаз. Значения интенсивности генерации второй гармоники в порошках исследованных боратов по отношению к α -SiO₂ находятся в диапазоне от 7 до 10 и увеличиваются с ростом ионного радиуса лантаноида.

Ключевые слова: двойные бораты, РЗЭ, синтез, ГВГ, нелинейно-оптические свойства.

Благодарности

Работа выполнена в рамках государственного задания БИП СО РАН (проект № 0273-2021-0008). Исследования методами порошковой рентгеновской дифракции проводились с использованием ресурсов Центра коллективного пользования научным оборудованием БИП СО РАН.

Для цитирования

Сравнительная оценка оптической нелинейности представителей семейства шортитоподобных двойных боратов $Na_3RE_2(BO_3)_3$ (*RE* = La, Pr, Nd, Sm, Eu) / E. B. Ковтунец, А. К. Субанаков, Т. С. Спиридонова, С. Ю. Стефанович // Вестник Бурятского государственного университета. Химия. Физика. 2024. Вып. 4. С. 15–23.

Введение

Обладающие нецентросимметричной (нцс) структурой бораты РЗЭ вызывают постоянный интерес специалистов по лазерному материаловедению. На основе нцс-материалов, сочетающих лазерную активность в ИК диапазоне за счет стимулированного излучения люминесцентных ионов (Nd³⁺, Yb³⁺ и др.) с оптической нелинейностью второго порядка и генерацией второй гармоники, можно создать миниатюрные лазеры видимого диапазона [1]. Острая потребность в подобных источниках света обусловливает большое количество исследований, посвященных изучению нелинейно-оптических свойств новых РЗЭ-соединений нецентросимметричного строения [2–5]. У многих боратных соединений уже обнаружена высокая ГВГ-активность в сочетании с высоким порогом лазерного повреждения и широкой областью прозрачности. В случае кристаллизации в фазах нецентросимметричного строения они заслуживают самого пристального внимания для разработки нелинейно-оптических преобразователей и лазерных сред [6].

Двойные бораты щелочных и редкоземельных металлов с нецентросимметричной структурой минерала шортита $Na_2Ca_2(CO_3)_3$ представляют интерес в качестве лазерных матриц с самоудвоением частоты излучения (так называемых SFDкристаллов). Ранее сообщалось о существовании шортитоподобных двойных боратов состава $Na_3RE_2(BO_3)_3$, где RE = La, Nd, Sm, Gd [7–11]. Для двух соединений из этого ряда $Na_3La_2(BO_3)_3$ и $Na_3Gd_2(BO_3)_3$ значения интенсивности генерации второй гармоники на порошках составили около 2 [12] и 1.3 [8] соответственно.

Рентгеноструктурное исследование монокристалла $Na_3La_2(BO_3)_3$ показало, что соединение кристаллизуется в ромбической сингонии в структурном типе шортита с пространственной группой *Amm2* [7]. Структуру этого соединения (рис. 1a) можно представить в виде бесконечных цепей, расположенных вдоль кристаллографического направления *c* и соединяющихся друг с другом за счет общих кислородных вершин (рис. 16). Цепи состоят из полиэдров LaO₉, скрепленных посредством общей грани. Изолированные BO₃-треугольники дополнительно усиливают соединение цепей между собой. Атомы натрия занимают пустоты (рис. 1).

Рис. 1. Структура Na₃La₂(BO₃)₃, построенная с использованием данных, приведенных в [7]: *а* — общий вид; *б* — проекция на плоскость *bc*

В статье представлены результаты твердофазного синтеза представителей семейства Na₃ $RE_2(BO_3)_3$ (RE = La, Pr, Nd, Sm, Eu), из которых два соединения Na₃ $Pr_2(BO_3)_3$ и Na₃ $Eu_2(BO_3)_3$ получены впервые. Уточнены метрики их кристаллических ячеек и проведена сравнительная оценка оптической нелинейности порошковых образцов с помощью методики Курца — Перри [13].

Экспериментальная часть

Твердофазный синтез. Поликристаллические образцы Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) приготовлены по керамической технологии. В качестве исходных веществ использовались оксиды соответствующих лантаноидов *RE*₂O₃ (*RE* = La, Nd, Sm, Eu), карбонат натрия и борная кислота (все квалификации «хч»). Для обезвоживания карбонат натрия и оксиды P3Э предварительно отжигали при 200 °C в течение 24 часов. Для получения Na₃Pr₂(BO₃)₃ использовался кристаллогидрат Pr₂(CO₃)₃·8H₂O («хч»).

Синтез осуществляли путем ступенчатого отжига смеси реагентов, взятых в стехиометрических количествах согласно реакции:

 $\mathbf{3}\mathrm{Na_2CO_3} + \mathbf{2}RE_2\mathrm{O_3} + \mathbf{6}\mathrm{H_3BO_3} \rightarrow \mathbf{2}\mathrm{Na_3}RE_2(\mathrm{BO_3})_3 + \mathbf{9}\mathrm{H_2O} + \mathbf{3}\mathrm{CO_2\uparrow}.$

Реакционные смеси тщательно перетирали в агатовой ступке, переносили в алундовые тигли и ступенчато нагревали до 300 и 600 °C со скоростью 10 °C/мин и выдержкой 5 часов при этих температурах. Затем образцы повторно измельчали и продолжали отжиг при 750–800 °C в течение 50 часов с многократной промежуточной гомогенизацией.

Рентгенофазовый анализ. Однофазность синтезированных образцов устанавливалась рентгенографически с помощью данных, полученных на дифрактометре D8 ADVANCE Bruker (детектор VANTEC, Cu K_a -излучение, $\lambda = 1.5418$ Å, геометрия отражения, вторичный монохроматор). Уточнение параметров элементарных ячеек методом Ле-Бейля проводилось в программе TOPAS 4.2 [14].

Описание установки и методики оценки нелинейно-оптических свойств. Нелинейно-оптическая активность двойных боратов оценивалась по относительной интенсивности генерации второй гармоники (ГВГ) в исследуемом материале в виде мелкодисперсного порошка (с размером кристаллитов ~ 5 µm) [13], размещаемого в одном канале оптической установки (рис. 2), и эталона (α -SiO₂), размещаемого в другом идентичном канале оптической установки, с использованием схемы «на отражение» [5].

В каждом канале сигнал ГВГ возбуждался излучением 1064 нм импульсного Nd:YAG-лазера Minilite-1, работающего в режиме модуляции добротности с частотой повторения 10 Гц. Длительность лазерного импульса составляла 3 нс, мощность падающего на препарат излучения подбиралась с помощью аттенюатора ниже значения порога оптического повреждения вещества и не превышала 0.1 MBT/cм². Генерируемый в образцах зеленый свет второй гармоники на длине волны 532 нм собирали с помощью широкоапертурной линзы с обратной стороны образца, пропускали через систему светофильтров и регистрировали фотоумножителем ФЭУ-77, интенсивность сигнала ГВГ измерялась синхронным интегратором. Полученный от исследуемого образца сигнал калибровался по отношению к сигналу от эталонного порошка α -SiO₂ с той же дисперсностью (5 µm), что и исследуемые препараты. По относительной величине Q = $I_{2\omega}/I_{2\omega}(\alpha$ -SiO₂) количественно определяли ГВГ-активность порошка при комнатной температуре.

ВЕСТНИК БУРЯТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. ХИМИЯ. ФИЗИКА

вывод сигнала **Рис. 2.** Блок-схема одноканальной лазерной установки для исследования порошков методом ГВГ

Использованный методический подход и экспериментальная установка полностью соответствуют классическому подходу Курца и Перри [15–16], за исключением примененной нами схемы регистрации сигнала «на отражение». Преимуществом нашей схемы регистрации перед схемой Курца и Перри «на просвет» является отсутствие необходимости контролировать потери интенсивности ГВГ за счет рассеивания излучения при его прохождении через полупрозначный порошкообразный образец. В нашем подходе образец считался полубесконечным и полностью поглощающим проходящее излучение, а регистрируемый отраженный сигнал, в силу одинаковой дисперсности образца и эталона, определялся одинаковой глубиной работающего слоя вещества. При этом умеренное оптическое поглощение самого вещества на длине волны излучения лазера (λ_{0}) и его второй гармоники ($\lambda_{2\omega}$) можно учесть путем введения соответствующих коэффициентов в виде $\exp(-\alpha_{\omega}L)$ и $\exp(-\alpha_{2\omega}L)$, где α_{ω} и $\alpha_{2\omega}$ — поглощение в данной части спектра, а *L* — толщина кристаллита в порошке. Для минимизации влияния оптического поглощения используются тщательно перетертые кристаллические порошки, для которых L составляет около 5 µm. Это позволяет получить приемлемую ошибку в определении интенсивности (10-20%) даже при коэффициентах поглощения $\alpha \sim 10-20$ cm⁻¹, характерных для полупрозрачных или слабоокрашенных веществ. Одновременно малый размер кристаллита исключает эффекты, связанные с влиянием на ГВГ эффекта фазового синхронизма [13], проявляющегося при *L* более 10–20 µm.

Результаты и обсуждение

Уточнение параметров элементарных ячеек $Na_3RE_2(BO_3)_3$ (*RE* = La, Pr, Nd, Sm, Eu).

Все наблюдаемые рефлексы на рентгенограммах Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) были проиндексированы в ромбической ячейке (пр. гр. *Amm*2). При уточнении методом Ле-Бейля [17] в качестве стартовых данных принимались параметры Na₃La₂(BO₃)₃ [7]. Для описания формы рефлексов использовалась функция Пирсона VII. В процессе уточнения вводились поправки на текстурирование всех изученных образцов в кристаллографическом направлении *0* 2 *0* в рамках модели сферических гармоник [18]. Наибольшее текстурирование наблюдалось в случае образца Na₃Pr₂(BO₃)₃ (рис. 3б). Уточнение было стабильным и давало приемлемые *R*-факторы, результаты представлены в табл. 1, расчетная и экспериментальная рентгенограммы с разностной кривой показаны на рис. 3. Необходимо отметить хорошее согласие полученных результатов с ранее опубликованными данными [7; 9; 11], параметры и, соответственно, объемы элементар-

Е. В. Ковтунец, А. К. Субанаков, Т. С. Спиридонова, С. Ю. Стефанович. Сравнительная оценка оптической нелинейности представителей семейства шортитоподобных двойных...

ных ячеек $Na_3RE_2(BO_3)_3$ (RE = La, Pr, Nd, Sm, Eu) закономерно уменьшаются по ряду РЗЭ (таблица 1).

Таблица 1

Na₃Pr₂(BO₃)₃

40

40

60

60

Na₃Sm₂(BO₃)₃

RE	La	Pr	Nd	Sm	Eu
R_{ion} Å, KH = 9 [19]	1.216	1.179	1.163	1.132	1.12
Сингония, пр. гр.	Ромбическая, Атт2				
<i>a</i> , Å	5.1523(1)	5.1303(1)	5.1205(1)	5.1041(1)	5.0954(1)
<i>b</i> , Å	11.3287(2)	11.2120(2)	11.1730(2)	11.0967(2)	11.0627(3)
<i>c</i> , Å	7.3037(1)	7.1521(1)	7.0967(1)	7.0023(2)	6.9707(2)
$V, Å^3$	426.31(1)	411.40(1)	406.01(1)	396.60(2)	392.93(2)
2 <i>θ</i> -интервал, °	5-60	5-60	5-60	5-60	5-60
$R_{wp}, \%$	5.996	8.293	4.797	3.456	3.158
$R_p, \%$	4.517	6.241	3.835	2.754	2.509
$R_{exp}, \%$	4.216	3.195	3.527	2.975	2.753
χ^2	1.422	2.596	1.360	1.162	1.147
$R_B, \%$	0.539	0.548	0.505	0.403	0.159

Нелинейно-оптические свойства. В таблице 2 приведены значения относительной интенсивности ГВГ для тщательно измельченных порошковых фракций (около 5 µm) представителей шортитоподобных двойных боратов Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) по отношению к α -кварцу.

Таблица 2

Интенсивность эффекта ГВГ ($I_{2\omega}/I_{2\omega}(\alpha$ -SiO₂)) (± 10%) в мелкодисперсных фракциях порошков Na₃ RE_2 (BO₃)₃ (RE = La, Pr, Nd, Sm, Eu)

Соединение	Цвет	$I_{2\omega}/I_{2\omega}(\alpha-\mathrm{SiO}_2)$	
$Na_3La_2(BO_3)_3$	Белый	10	
$Na_3Pr_2(BO_3)_3$	Светло-зеленый	2.5	
Na ₃ Nd ₂ (BO ₃) ₃	Светло-голубой	8.5	
Na ₃ Sm ₂ (BO ₃) ₃	Бесцветный	7	
$Na_3Eu_2(BO_3)_3$	Бесцветный	7	

Двойные бораты со структурой шортита имеют близкие значения нелинейной оптической восприимчивости, за исключением Na₃Pr₂B₃O₉, более слабый эффект ГВГ для которого обусловлен пониженной прозрачностью вещества на длине волны второй гармоники в зеленой части спектра. Принимая во внимание то, что для порошков размером частиц 5-10 мкм интенсивность сигнала ГВГ для порошка KDP примерно в 4 раза выше, чем для α -SiO₂, можно сравнить полученные литературными данными. результаты с Так, сигнал ГВГ нами $I_{2\omega}(\text{Na}_3\text{La}_2(\text{BO}_3)_3)/I_{2\omega}(\text{KDP})$ \sim 8 $I_{2\omega}(Na_3La_2(BO_3)_3)/I_{2\omega}(\alpha-SiO_2)$ [12] И $I_{2\omega}(Na_3Gd_2(BO_3)_3)/I_{2\omega}(KDP) \sim 5 I_{2\omega}(Na_3Gd_2(BO_3)_3)/I_{2\omega}(\alpha-SiO_2)$ [8]. Полученные нами данные для соединения с лантаном больше на 2 единицы. Учитывая близкие ионные радиусы гадолиния ($R_{ion} = 1.107$, КЧ = 9) [19] и европия ($R_{ion} = 1.12$, КЧ = 9) [19], можно ожидать близкие значения сигнала ГВГ, тогда значения для Na₃Eu₂(BO₃)₃ (табл. 2) также на две единицы больше, чем у Na₃Gd₂(BO₃)₃ [8]. Таким образом, наблюдаемое расхождение в две единицы, можно принять за систематическую ошибку, которая подтверждает правильность принятого нами допущения, что $I_{2\omega}(\text{KDP}))/I_{2\omega}(\alpha\text{-SiO}_2) \sim 4$.

Если, как обычно, исходить из представлений о подавляющем вкладе в оптическую нелинейность боратов именно от химических связей В–О, то заметную по данным таблицы 2 тенденцию на увеличение значений $I_{2\omega}/I_{2\omega}(SiO_2)$ можно логично связать с возрастанием ковалентности химических связей В–О по мере их удлинения вместе с параметрами элементарной ячейки в ряду однотипных соединений. Полученные данные указывают на перспективность дальнейших исследований двойных боратов со структурой шортита Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) в качестве матрицы для разработки нелинейно-оптических преобразователей.

Заключение

Двойные бораты состава Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) получены по керамической технологии, Na₃Pr₂(BO₃)₃ и Na₃Eu₂(BO₃)₃ синтезированы впервые. Кристаллографические характеристики этих фаз уточнены методом Ле-Бейля с использованием в качестве стартовых значений Na₃La₂(BO₃)₃ [7]. Соединения кристаллизуются в нецентросимметричной пр. гр. *Amm*2 и принадлежат к структурному типу шортита. Изучены их нелинейно-оптические свойства и показано,

что ГВГ активность возрастает с увеличением ионного радиуса лантаноида. Полученные значения сигналов ГВГ указывают на перспективность дальнейших исследований шортитоподобных двойных боратов состава Na₃*RE*₂(BO₃)₃ как потенциальных матриц нелинейно-оптических преобразователей.

Литература

1. Brenier A., Jaque D., Majchrowski A. Bi-functional laser and non-linear optical crystals. *Optical Materials*. 2006; 28(4): 310-323. URL: https://doi.org/10.1016/j.optmat.2005.01.015.

2. Miriding M., Zhang M., Yang Z., and Pan S. Targeting the next generation of deepultraviolet nonlinear. Optical materials: expanding from borates to borate fluorides to fluorooxoborates. *Acc. Chem. Res.* 2019; 52(3): 791–801. URL: https://doi.org/10.1021/ acs.accounts.8b00649.

3. Xie Z., Mutailipu M., He G. at all. A series of rare-earth borates $K_7MRE_2B_{15}O_{30}$ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. *Chemistry of materials*. 2018; 30(7): 2414-2423. URL: https://doi.org/10.1021/acs.chemmater.8b00491.

4. Kuz'min N. N., Boldyrev K. N., Leonyuk N. I. at all. Luminescence and nonlinear optical properties of borates LnGa₃(BO₃)₄ (Ln = Nd, Sm, Tb, Er, Dy, or Ho). *Opt. Spectrosc.* 2019; 127: 107–112. URL: https://doi.org/10.1134/S0030400X19070154.

5. Beskorovaynaya D. A., Deyneko D. V., Baryshnikova O. V. at all. Optical non-linearity tuning in $Ca_{8-x}Pb_xMBi(VO_4)_7$ whitlockite-type systems. *Journal of Alloys and Compounds*. 2016; 672: 1–8. URL: https://doi.org/10.1016/j.jallcom.2016.02.218.

6. Mutailipu M., Poeppelmeier K., and Pan S., Borates: a rich source for optical materials. *Chemical Reviews*. 2021; 121(3): 1130–1202. URL: https://doi.org/10.1021/acs.chemrev.0c00796

7. Zhang G., Li Y., Fu P. at all. Crystal structure of sodium lanthanum borate Na₃La₂(BO₃)₃. *Journal of synthetic crystals*. 2004; 33 (4): 490–495. URL: http://rgjtxb. jtxb.cn/EN/Y2004/V33/I4/490

8. Zhao S., Zhang G., Zhang X. at all. Growth and optical properties of Na₃Gd₂(BO₃)₃ crystal. *Opt Mater*. 2012; 34(8): 1464–1467. URL: https://doi.org/10.1016/j.optmat.2012.03.002.

9. Zhang G., Wu Y., Fu P. at all. A new sodium samarium borate Na₃Sm₂(BO₃)₃. *J Phys Chem Solids*. 2002; 63(1): 145–146. URL: https://doi.org/10.1016/S0022-3697(01)00090-7

10. Mascetti J., Fouassier C., Hagenmuller P. Concentration quenching of the Nd³⁺ emission in alkali rare earth borates. *Journal of Solid State Chemistry*. 1983; 50 (2): 204-212. URL: https://doi.org/10.1016/0022-4596(83)90189-5

11. Kuznetsov A. B., Jamous A. Y., Svetlichnyi V. A., K. A. Kokh. Phase relations between Na₃Nd(BO₃)₂, Na₃Nd₂(BO₃)₃, NdBO₃ and their luminescence properties. *J Struct Chem.* 2024; 65: 1736–1747. URL: https://doi.org/10.1134/S0022476624090051

12. Zhang G., Wu Y., Fu P. at all. A new nonlinear optical borate crystal Na₃La₂(BO₃)₃. *Chemistry Letters*. 2001; 30(5): 456–457. URL: https://doi.org/10.1246/ cl.2001.456

13. Kurtz S. K., Perry T. T. A powder technique for the evaluation of nonlinear optical materials. *J. Appl. Phys.* 1986; 39: 3798–3813. URL: https://doi.org/10.1063/1.1656857

14. Coelho A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. *Journal of Applied Crystallography*. 2018; 51: 210–218. URL: https://doi.org/10.1107/S1600576718000183

15. Dekker P., Dawes J. M., Piper J. A. at all. 1.1 W CW self-frequency-doubled diodepumped Yb:YAl₃(BO₃)₄ laser. *Opt Commun.* 2001; 195(5–6): 431–436. URL: https://doi.org/10.1016/S0030-4018(01)01347-5

16. Ilas S., Loiseau P., Aka G., Taira T. 240 kW peak power at 266 nm in nonlinear $YAl_3(BO_3)_4$ single crystal. *Optics Express.* 2014; 22(24); 30325–30332. URL: https://doi.org/10.1364/OE.22.030325

17. Le Bail A., Jouanneaux A. A Qualitative account for anisotropic broadening in wholepowder-diffraction-pattern fitting by second-rank tensors. *J. Appl. Cryst.* 1997; 30: 265–271. URL: https://doi.org/10.1107/S0021889896011922

18. Järvinen M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect. *Journal of Applied Crystallography*. 1993; 26(4): 525–531. URL: https://doi.org/10.1107/S0021889893001219

19. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica*. 1976; 32: 751–767. URL: https://doi.org/10.1107/S0567739476001551.

Статья поступила в редакцию 20.11.2024; одобрена после рецензирования 03.12.2024; принята к публикации 12.12.2024.

Comparative Assessment of Optical Nonlinearity of Members of the Family of Shortite-Type Double Borates $Na_3RE_2(BO_3)_3$ (RE = La, Pr, Nd, Sm, Eu)

Evgeny V. Kovtunets Researcher, Baikal Institute of Nature Management SB RAS 6 Sakhyanovoy St., Ulan-Ude 670047, Russia kovtunets@binm.ru

Aleksey K. Subankov Cand. Sci. (Chemistry), Senior Researcher, Baikal Institute of Nature Management SB RAS 6 Sakhyanovoy St., Ulan-Ude 670047, Russia subanakov@binm.ru

Tatyana S. Spiridonova Cand. Sci. (Chemistry), Senior Researcher, Baikal Institute of Nature Management SB RAS 6 Sakhyanovoy St., Ulan-Ude 670047, Russia spiridonova@binm.ru

Sergey Yu. Stefanovich Dr. Sci. (Phys. and Math.), Prof., Lomonosov Moscow State University 1 Leninskie Gory, Moscow 119991, Russia s_stefanovich@mail.ru

Abstract. We obtained double borates of the composition Na₃*RE*₂(BO₃)₃ (*RE* = La, Pr, Nd, Sm, Eu) using ceramic technology. Na₃Pr₂(BO₃)₃ and Na₃Eu₂(BO₃)₃ have been synthesized for the first time. The unit cell parameters were refined using the Le Bail method, the obtained compounds crystallize in the space group *Amm2* and are classified as shortite-type double borates. We have estimated he optical nonlinearity of the obtained double borates using the Kurtz-Perry powder method. The second harmonic generation intensity values in shortite-type borate powders relative to α -SiO₂ range from 7 to 10 and increase with the lanthanide ionic radius.

Keywords: double borates, rare earth elements, synthesis, second-harmonic generation, nonlinear optical properties.

Acknowledgements

The research was carried out within the framework of the state assignment of Baikal Institute of Nature Management SB RAS No 0273-2021-0008.

The X-ray powder diffraction measurements were performed using the resources of the Research Equipment Sharing Center of Baikal Institute of Nature Management SB RAS.

For citation

Kovtunets E. V., Subankov A. K., Spiridonova T. S., Stefanovich S. Yu. Comparative Assessment of Optical Nonlinearity of Members of the Family of Shortite-Type Double Borates $Na_3RE_2(BO_3)_3$ (RE = La, Pr, Nd, Sm, Eu). Bulletin of Buryat State University. Chemistry. Physics. 2024; 4: 15–23 (In Russ.).

The article was submitted 20.11.2024; approved after reviewing 03.12.2024; accepted for publication 12.12.2024.