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Аннотация. Фитогормоны — это сигнальные молекулы, вырабатываемые раститель-
ными объектами в очень низких концентрациях, которые контролируют все аспекты 
роста и развития растений: эмбриогенез, защита от патогенов, стрессоустойчивость, 
репродуктивное развитие и др. Перспективным направлением являются исследования 
влияния фитогормонов на вторичные метаболиты, такие как экдистероиды и низкомо-
лекулярные фенольные соединения. В ходе продолжающегося химического изучения 
видов рода Silene в качестве объекта исследования нами был выбран распространенный 
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вид данного рода — S. amoena L. В проведенном исследовании было изучено влияние 
экзогенных фитогормонов на продуктивность и накопление экдистероидов и глико-
зилфлавонов в надземных и подземных органах S. amoena в условиях интродукции. 
С применением высокоэффективной жидкостной хроматографии с ультрафиолетовым, 
диодно-матричным и масс-спектрометрическим (ионизация электрораспылением) 
детектированием (ВЭЖХ-УФ, ВЭЖХ-ДМД-ИЭР-МС) в надземной части интродуци-
рованных образцов S. amoena было установлено присутствие 12 экдистероидов, среди 
которых доминирующими являлись 20-гидроксиэкдизон и полиподин B, а также шести 
гликозилфлавонов, включая производные шафтозида, изовитексина и свертизина. Уста-
новлено, что для повышения продуктивности S. amoena обосновано применение эти-
лового эфира арахидоновой кислоты, а для получения сырья с высоким содержанием 
экдистероидов и гликозилфлавонов рекомендовано применение 24-эпибрассинолида 
(100 мг/л) и 4-хлорфеноксиуксусной кислоты (100 мг/л) соответственно. 
Ключевые слова: Silene amoena, Caryophyllaceae, экдистероиды, гликозилфлавоны, 
фитогормоны, ВЭЖХ, масс-спектрометрия.
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Введение
В XIX в. Чарльз Дарвин впервые предположил, что определенные химические 

соединения способны стимулировать рост сельскохозяйственных культур, которые 
получили название «фитогормоны» [Darwin, 1881]. В настоящее время к фитогор-
монам относят сигнальные молекулы, вырабатываемые растительными объектами 
в очень низких концентрациях, контролирующие все аспекты роста и развития 
растений: эмбриогенез [Shekhawat, Mathur, Batra, 2009; Loyola-Vargas et al., 2019], 
защита от патогенов [Bari, Jones, 2009; Bürger, Chory, 2019], стрессоустойчивость 
[Ciura, Kruk, 2018; Ku et al., 2018] и репродуктивное развитие [Sundberg, Østergaard, 
2009; Pierre-Jerome, Drapek, Benfey, 2018]. В зависимости от химического строения 
выделяют несколько различных классов фитогормонов — ауксины, абсцизовая кис-
лота, цитокинины, этилен-гиббереллины, брассиностероиды, жасмонаты и стриго-
лактоны [Wani et al., 2016]. Однако сведения о влиянии этих химических соедине-
ний на растительный организм остаются отрывочными и зависят от концентрации 
используемых фитогормонов, их локализации в тканях и органах растений, а также 
от взаимодействия с другими фитокомпонентами [Davies, 2010]. Располагая инфор-
мацией о влиянии экзогенных регуляторов на вегетацию и биосинтез метаболитов 
растительного объекта, можно целенаправленно изменять темпы роста и развития 
растений, а также накопление биологически активных соединений. Перспектив-
ным направлением являются исследования влияния фитогормонов на вторичные 
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метаболиты, такие как экдистероиды и низкомолекулярные фенольные соединения 
[Villarreal-García et al., 2016].

В ходе продолжающегося химического изучения видов рода Silene [Оленников, 
Кащенко, Чирикова, 2019; Olennikov, 2019a] в рамках проведенного исследования 
нами был выбран распространенный в Европейской России, Западной и Восточ-
ной Сибири вид данного рода — S. amoena L. [Флора СССР, 1936]. Ранее нами 
было проведено также исследование химического состава близкого вида S. repens 
Patrin, изучен экдистероидный и флавоноидный профиль данного растительного 
вида, произрастающего в Байкальском регионе [Olennikov, 2019b, 2020]. Задачей 
проведенного исследования было изучение влияния экзогенных фитогормонов на 
продуктивность и накопление экдистероидов и гликозилфлавонов в надземных и 
подземных органах S. amoena в условиях интродукции. 

Материалы и методы
Растительное сырье. Саженцы Silene amoena были выращены из аутентичных 

семян, полученных из Главного ботанического сада им. Цицина РАН (Москва, 
Россия). Семена стерилизовали инкубацией в течение 1 мин в 75 %-ном этаноле, 
а  затем тщательно промывали стерильной водой. Семена проращивали в почве 
вторфяных горшках в контролируемых условиях при температуре 25/18 °С (день/
ночь), относительной влажности воздуха 70–80 %, освещенности 10 клк и фотопе-
риоде 14 ч. В возрасте 30 дней (2–3 настоящих листа) сеянцы S. amoena высаживали 
в грунтовую пленочную теплицу (4 раст./м2) на территории приусадебного участка 
ИОЭБ СО РАН (г. Улан-Удэ, Республика Бурятия) и выращивали в течение 30 дней 
в весенне-летнем обороте с выполнением всех агротехнических мероприятий. 
Саженцы S. amoena были разделены на группы по 30 особей. Каждая группа под-
вергалась опрыскиванию надземной части (24-эпибрассинолид, 4-хлорфеноксиук-
сусная кислота, гиббереллиновых кислот натриевые соли, арахидоновая кислота, 
арахидоновой кислоты этиловый эфир) или прикорневой обработке (индолилмас-
ляная кислота) на 1, 7, 14 и 21 сутки в концентрациях 10 и 100 мг/л. Растения обра-
батывались методом опрыскивания до стекания первой капли с листа, прикорневая 
обработка заключалась во внесении 50 мл рабочего раствора в почву. Контрольную 
группу растений опрыскивали дистиллированной водой. Для обработки исполь-
зовались разбрызгиватели ручные объемом 1000 мл. Все обработки проходили 
в раннее время суток, в 9–10 часов утра при температуре воздуха не более 25 °С. 
Через 30 дней растения извлекали из почвы, корни промывали. Сырье высуши-
вали в конвекционной печи (40 °С) до значений влажности < 5 %, определяли массу 
листьев и корней. Образцы измельчали, просеивали до среднего диаметра частиц 
0,5 мм на просеивающей машине ЭРЛ-М1 («Зернотехника», Москва, Россия).

Общие экспериментальные условия. Масс-спектрометрический анализ про-
водили на TQ-масс-спектрометре LCMS-8050 (Shimadzu, Columbia, MD, USA). 
В работе использованы реагенты: эпибрассинолид, индолил-3-масляная кислота, 
4-хлорфеноксиуксусная кислота, гибберелиновых кислот натриевые соли, арахи-
доновая кислота, арахидоновой кислоты этиловый эфир (Sigma-Aldrich, St. Louis, 
MO, USA); коммерческие образцы веществ сравнения: 20-гидроксиэкдизон (ООО 
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Фитопанацея, Москва, Россия), полиподин В, экдизон (ChemFaces, Wuhan, Hubei, 
PRC). Интегристерон А и 2-дезокси-20-гидроксиэкдизон были выделены ранее 
из S. jenisseensis [Olennikov, Kashchenko, 2020]. 26-Гидроксиинтегристерон А, 
20,26-дигидроксиэкдизон, 26-гидроксиполиподин В, туркестерон, 26-гидроксиэк-
дизон, 20-гидроксиэкдизон-2-О-ацетат, витикостерон Е, шафтозид-2′′-О-гликозид 
(силенезид Е), мелозид А были выделены из S. repens [Olennikov, Kashchenko, 
2020], свертизин-2′′-О-гликозид из S. samojedorum [Olennikov, Chirikova, 2019]. 
Условия пробоподготовки растительных образцов, особенности микроколоночной 
ВЭЖХ-УФ и ВЭЖХ-ДМД-ИЭР-МС описаны нами ранее [Оленников, Кащенко, 
2019; Оленников, Кащенко, Чирикова, 2019]. Статистический анализ проводили 
с использованием однофакторного дисперсионного анализа (ANOVA). Значимость 
различий средних определяли с помощью многорангового теста Дункана.

Результаты и обсуждение
Многокомпонентность химического профиля различных видов Silene, собран-

ных в условиях Байкальского региона, была показана нами ранее [Olennikov, 2019b, 
2020]. На предварительном этапе исследования для отделения экдистероидов и 
гликозилфлавонов от посторонних соединений этанольных извлечений из травы 
и корней интродуцированных образцов S. amoena применяли твердофазную экс-
тракцию на полиамиде, что позволило получить фракции SPE-1 и SPE-2. Данные 
фракции были исследованы с применением микроколоночной ВЭЖХ-УФ и ВЭЖХ-
ДМД-ИЭР-МС. В результате хроматографического анализа фракций SPE-1 из травы 
и корней интродуцированной S. amoena было выявлено присутствие 12 соедине-
ний, отнесенных к группе экдистероидов. Интродуцированные образцы S. amoena 
по составу экдистероидного профиля не отличались от дикорастущих образцов. 
Основными экдистероидами интродуцированных образцов травы S. amoena явля-
лись 20-гидроксиэкдизон (6) и полиподин В (7), корней — 20-гидроксиэкдизон (6).

На следующем этапе исследования нами был проведен полевой эксперимент для 
определения влияния экзогенных фитогормонов на продуктивность и накопление 
экдистероидных соединений в интродуцированных образцах S. amoena. Было при-
нято решение использовать соединения 6 и 7 в качестве маркерных экдистероидов 
(табл. 1). Согласно полученным экспериментальным данным обработка саженцев 
S. amoena брассиностероидом (24-эпибрасинолид) в концентрации 100 мг/л приво-
дила к значительному увеличению средней массы листьев растений (> 1,63 раза). 
Прирост массы корней при использовании максимальной концентрации 24-эпи-
брассинолида увеличился с 50,8 до 60,5 мг. Содержание целевых экдистероидов 
в  листьях S. amoena — 20-гидроксиэкдизона и полиподина B, было максималь-
ным среди всех исследуемых групп растений, обработанных фитогормонами. 
Возможно, причиной является химическое родство экдистероидов и брассиносте-
роидов. В соответствии с ранее полученными сведениями экдистероиды и брасси-
ностероиды являются схожими по химической структуре соединениями и могут 
оказывать опосредованное влияние на количественное содержание друг друга.
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Таблица 1
Средняя масса для одного растения и суммарное содержание 

20-гидроксиэкдизона (6) и полиподина В (7) в органах S. amoena 
после 1 месяца обработки фитогормонами

Группа Концентрация, 
мг/л

Листья Корни

масса, 
мг а 6, мг/г б 7, мг/г б масса, 

мг а 6, мг/г б

Контроль (вода) – 50,3 0,95 0,40 50,8 0,42

24-эпибрассинолид 10 64,3† 2,11† 1,12† 52,1† 0,36†

24-эпибрассинолид 100 81,9† 2,15† 1,12† 60,5† 0,40

Индолилмасляная кислота 10 60,8† 1,00† 0,45 50,3 0,47†

Индолилмасляная кислота 100 64,7† 1,05† 0,49† 57,9† 0,50†

4-Хлорфеноксиуксусная 
кислота 10 67,7† 1,02 0,34† 56,3† 0,41

4-Хлорфеноксиуксусная 
кислота 100 78,6† 1,02 0,37 60,4† 0,40

Гиббереллиновых кислот 
натриевые соли 10 83,5† 0,95 0,41 56,3† 0,50†

Гиббереллиновых кислот 
натриевые соли 100 115,7† 0,97 0,40 71,9† 0,81†

Арахидоновая кислота 10 60,9† 0,90 0,40 65,8† 0,57†

Арахидоновая кислота 100 81,3† 1,01 0,40 68,3† 0,60†

Арахидоновой кислоты 
этиловый эфир 10 124,3† 0,84† 0,33† 70,6† 0,71†

Арахидоновой кислоты 
этиловый эфир 100 145,9† 0,83† 0,29† 71,4† 0,72†

* Указано среднее значение воздушно-сухой массы для 1 растения (n = 30). б От массы воздушно-
сухого сырья. † Разница достоверна по сравнению с данными контрольной группы (p> 0,95)

Известно, что обработка 4-дневных саженцев Lepidium sativum экзогенным 
20-гидроксиэкдизоном приводила к существенному снижению содержания эндо-
генных брассиностероидов [Tarkowská, Krampolová, Strnad, 2020]. В свою очередь, 
при обработке саженцев 24-эпибрассинолидом наблюдался противоположный 
эффект. В соответствии с химическим строением 20-гидроксиэкдизон, полиподин 
B и 24-эпибрассинолид относятся к классу тетрациклических тритерпенов и вклю-
чают в себя полигидроксилированные стероидные структуры с оксигенированным 
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B-кольцом. Однако имеются и структурные различия между этими двумя груп-
пами фитостеринов, которые в конечном итоге оказывают прямое влияние на их 
биологическую активность, а именно: (1) B-кольцо 24-эпибрассинолида содержит 
только карбонильную группу у C-6, тогда как экдистероиды имеют характерный 
хромофорный фрагмент 14-гидрокси-7-ен-6-она; (2) ориентация гидроксильных 
групп у C-2, C-3 и C-22 является зеркальной; (3) сочленение A- и B-колец имеет 
цис-ориентацию в скелете экдистероидов, в то время как для 24-эпибрассинолида 
характерна транс-конфигурация [Tarkowská, Krampolová, Strnad, 2020]. Согласно 
литературным данным, гормональная активность у насекомых или растений 
регулируется структурой боковой цепи, а не природой стероидного каркаса ядра. 
В частности, модификации C-20 резко повлияли на гормональную активность как 
экдистероидов, так и 24-эпибрассинолида [Watanabe, 2015]. Интересно, что полу-
ченные данные коррелировали с литературными сведениями только в отношении 
надземной части S. amoena. Содержание 20-гидроксиэкдизона в корнях по сравне-
нию с контрольной группой существенно не изменилось. 

В свою очередь, обработка S. amoena представителем класса ауксинов, индо-
лилмасляной кислотой (100 мг/л), оказала наиболее выраженное влияние именно 
на подземные органы данного растительного вида. Наблюдалось увеличение про-
дуктивности корней с 50,8 до 57,9 мг; содержание 20-гидроксиэкдизона также воз-
растало с 0,42 до 0,50 мг/г. Фитогормоны ауксины, являясь производными индола, 
стимулируют рост плодов и побегов растений, рост клеток камбия, вызывают поло-
жительный геотропизм корней, влияют на дифференцировку клеток и обеспечи-
вают взаимодействие отдельных органов [Zhao, 2010]. 

Обработка 4-хлорфеноксиуксусной кислотой (100 мг/л), которая имеет схожее 
химическое строение c ауксинами, приводила к увеличению продуктивности как 
надземных (78,6 мг), так и подземных органов (60,4 мг) S. amoena. Содержание 
20-гидроксиэкдизона в листьях возрастало до 1,02 мг/г и снижалось в корнях до 
0,40 мг/г. Данное соединение используется в сельском хозяйстве для повышения 
продуктивности видов семейства Пасленовых за счет стимулирования образова-
ния завязей и предотвращения их опадания [Sasaki, Yano, Yamasaki, 2005]. Воз-
можно, небольшая длительность эксперимента и отсутствие генеративных орга-
нов у саженцев S. amoena не позволили в полной мере оценить влияние данного  
регулятора роста. 

При использовании раствора гиббереллиновых кислот натриевых солей 
(100  мг/л) наблюдалось повышение продуктивности надземной части S. amoena 
в 2,30 раза (с 50,3 до 115,7 мг/г). Содержание 20-гидроксиэкдизона при этом повы-
шалось незначительно, а содержание полиподина B не изменялось. Было отмечено 
увеличение массы корней в 1,42 раза, при этом содержание 20-гидроксиэкдизона 
в корнях повысилось в 1,93 раза (с 0,42 до 0,81 мг/г). К гиббереллинам относятся 
фитогормоны с тетрациклической дитерпеновой структурой, функции которых 
связаны со стимуляцией вегетативного развития растений (прорастание, рост 
стебля в длину) и генеративного развития (перехода к цветению). Гиббереллины 
действуют в одном направлении с ауксинами и стимулируют биосинтез и передачу 
сигнала друг другу [Gupta, Chakrabarty, 2013]. 
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Обработка препаратами арахидоновой кислоты приводила к значительному 
увеличению продуктивности саженцев S. amoena. Выявлено, что максимальная 
продуктивность надземных (в 2,90 раза) и подземных органов (в 1,41 раза) из всех 
экспериментальных групп была отмечена при обработке этиловым эфиром ара-
хидоновой кислоты (100 мг/л). Однако содержание обоих экдистероидов в траве 
S. amoena было меньше, чем в контрольных образцах. Исследуемые соединения 
арахидоновой кислоты не относятся к фитогормонам как предыдущие компоненты, 
а являются элиситорами, т. е. не свойственными для организма растения соедине-
ниями, которые попадают в него извне и вызывают устойчивость к фитопатоген-
ным инфекциям, что аналогично процессу иммунизации [Dedyukhina, Kamzolova, 
Vainshtein, 2014]. Ввиду повышенной устойчивости растительных объектов 
к болезням наблюдается увеличение урожайности. 

Исходя из полученных данных можно сделать вывод о том, что применение 
определенного фитогормона или элиситора в случае S. amoena будет зависеть от 
задачи исследователя. Если необходимо повысить урожайность S. amoena, то обо-
сновано применение элиситора этилового эфира арахидоновой кислоты. Если же 
необходимо получить сырье с высоким содержанием экдистероидов, то рекомен-
довано применение фитогормона 24-эпибрассинолида.

Анализ фракции SPE-2 из травы S. amoena осуществляли методом ВЭЖХ-ДМД-
ИЭР-МС, используя для идентификации данные о хроматографической подвижно-
сти, УФ и масс-спектрах в сравнении с известными соединениями и сведениями 
литературы. Всего в SPE-2 было обнаружено 6 компонентов (14–19), отнесенных 
на основе УФ-спектров к группе гликозилфлавонов, в том числе к производным 
шафтозида (шафтозид-2′′-О-гликозид, 14; шафтозид, 15), изовитексина (изовитек-
син-2′′-О-гликозид, 16; изовитексин, 17) и свертизина (свертизин-2′′-О-гликозид, 
18; свертизин, 19). Шафтозид (15), изовитексин-2′′-О-гликозид (мелозид А, 16), изо-
витексин (17) ранее были обнаружены нами в S. repens [18], а свертизин-2′′-О-гли-
козид (18) и свертизин (19) выявлены в S. amoena впервые. Интерес представляет 
соединение 14. УФ-спектр данного соединения характерен для флавонов. Анализ 
масс-спектра позволяет отнести данное соединение к С-гликозилфлавонам. Моле-
кулярная формула 14 была определена как C32H38O19 (m/z 725 для [M-H]). Общая 
картина масс-спектра была близка к таковой шафтозида (апигенин-6-С-глюко-
зид-8-С-арабинозид, 15), что позволило предварительно охарактеризовать 14 как 
О-гексозид шафтозида. Ранее соединение 14 ранее было впервые обнаружено нами 
в S. italica и получило название шафтозид-2′′-О-гликозид (силенезид Е) [Olennikov, 
Kashchenko, 2020].

На заключительном этапе исследования была проведена оценка влияния экзо-
генных фитогормонов на содержание гликозилфлавонов 14–19 в листьях S. amoena 
после 1 месяца обработки (табл. 2).

Максимальная концентрация гликозида, шафтозида, силенезида Е (14) наблюда-
лась при опрыскивании сеянцев S. amoena 24-эпибрассинолидом в концентрации 
100 мг/л. Содержание данного компонента увеличивалось в 1,33 раза по сравнению 
с контролем. В свою очередь максимальная продукция шафтозида (15), доминиру-
ющего флавоноидного соединения травы S. amoena, была отмечена при использо-
вании в максимальной концентрации аналога ауксина — 4-хлорфеноксиуксусной 



112

ПРИРОДА ВНУТРЕННЕЙ АЗИИ 					       	    № 2(31) 2025
NATURE OF INNER ASIA

кислоты. Содержание шафтозида возрастало с 0,70 до 2,99 мг/г, то есть в 4,27 раза. 
Для мелозида А (16), который является гликозидом изовитексина, и его агликона 
изовитексина (17) также было отмечено максимальное накопление при обработке 
4-хлорфеноксиуксусной кислотой (100 мг/л). По сравнению с контрольной группой 
их содержание возрастало в 5 и 2,71 раза соответственно. Максимальное увеличение 
содержания свертизин-2′′-О-гликозида (18) было выявлено при обработке натрие-
выми солями гиббереллиновых кислот (100 мг/л) с 0,10 до 0,60 мг/г. Наибольшее 
накопление агликона свертизина (19) было отмечено в случае обработки арахидо-
новой кислотой (100 мг/л). Суммарное содержание гликозилфлавонов наблюдалось 
при обработке сеянцев 4-хлорфеноксиуксусной кислотой в максимальной концен-
трации и составляло 4,16 мг/г против 1,52 мг/г в контрольной группе.

 
Таблица 2

Содержание гликозилфлавонов в листьях S. amoena 
после 1 месяца обработки фитогормонами

Группа Конц., 
мг/л

Содержание гликозилфлавонов, мг/г ± S.D.а, б

14 15 16 17 18 19 Σ14–19

Контроль (вода) - 0,58 0,70 0,01 0,07 0,10 0,06 1,52

24-эпибрассинолид 10 0,75† 1,12† – 0,01† 0,08 0,04 2,00†

24-эпибрассинолид 100 0,77† 1,29† – 0,01† 0,06† 0,02† 2,15†

Индолилмасляная кислота 10 0,57 1,14† 0,02† 0,10 0,10 0,08† 2,01†

Индолилмасляная кислота 100 0,60 1,17† 0,02† 0,14† 0,14† 0,16† 2,23†

4-хлорфенокси-уксусная 
кислота 10 0,71† 2,05† 0,01 0,10 0,05† 0,07 2,99†

4-хлорфенокси-уксусная 
кислота 100 0,76† 2,99† 0,05† 0,19† 0,05† 0,12† 4,16†

Гиббереллиновых кислот
натриевые соли 10 0,30† 0,37† – 0,05 0,53† 0,04† 1,29†

Гиббереллиновых кислот
натриевые соли 100 0,35† 0,24† – 0,07 0,60† 0,03† 1,29†

Арахидоновая кислота 10 0,67† 1,12† – 0,09 0,15† 0,10† 2,13†

Арахидоновая кислота 100 0,70† 1,45† 0,01 0,14† 0,17† 0,19† 2,66†

Арахидоновой кислоты 
этиловый эфир 10 0,35† 0,85† 0,02† 0,10 0,05† 0,02† 1,39†

Арахидоновой кислоты 
этиловый эфир 100 0,34† 0,90† 0,03† 0,15† 0,07† 0,01† 1,50

* От массы воздушно-сухого сырья. б Гликозилфлавоны: 14 — шафтозид-2′′-О-гликозид (силенезид 
Е), 15 — шафтозид, 16 — изовитексин-2′′-О-гликозид (мелозид А), 17 — изовитексин, 18 — свер-
тизин-2′′-О-гликозид, 19 — свертизин. † Разница достоверна по сравнению с данными контрольной 
группы (p > 0,95).
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Таким образом, для получения сырья S. amoena с высоким содержанием гли-
козилфлавонов обоснована обработка сеянцев 4-хлорфеноксиуксусной кислотой. 
Известные сведения литературы о влиянии фитогормонов на продукцию феноль-
ных соединений в растительном организме указывают на то, что брассинолиды и 
ауксины могут способствовать накоплению флавоноидов [Petridis, 2016].

Выводы
1.	 В интродуцированных образцах травы и корней Silene amoena выявлено 

присутствие 12 экдистероидов: 26-гидроксиинтегристерона А, 20, 26-дигидро- 
ксиэкдизона, 26-гидроксиполиподина В, интегристерона А, туркестерона, 20- 
гидроксиэкдизона, полиподина В, 26-гидроксиэкдизона, экдизона, 2-дезокси- 
20-гидроксиэкдизона, 20-гидроксиэкдизона-2-О-ацетата, витикостерона Е. 

2.	 В интродуцированных образцах травы S. amoena выявлено присутствие 
6 гликозилфлавонов: производных шафтозида, изовитексина, свертизина. Сверти-
зин-2′′-О-гликозид, свертизин и силенезид Е обнаружены в S. repens впервые. 

3.	 Установлено, что для повышения продуктивности S. amoena обосновано 
применение этилового эфира арахидоновой кислоты. Для получения сырья с высо-
ким содержанием экдистероидов и гликозилфлавонов рекомендовано примене-
ние 24-эпибрассинолида (100 мг/л) и 4-хлорфеноксиуксусной кислоты (100 мг/л) 
соответственно. 
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Abstract. Phytohormones are signaling molecules produced by plant objects in low concen-
trations that control all aspects of plant growth and development: embryogenesis, protection 
from pathogens, stress resistance, reproductive development, etc. Investigations on the influ-
ence of phytohormones on secondary metabolites such as ecdysteroids and low molecular 
weight phenolic compounds is a promising area. In the course of the ongoing chemical study 
of the species of the genus Silene, we have selected as an object of our research the wide-
spread species of this genus — S. amoena L. The research focuses on studying the influence 
of exogenous phytohormones on the productivity and accumulation of ecdysteroids and gly-
cosylflavones in the herb and root of S. repens. Using high-performance liquid chromato- 
graphy with ultraviolet, diode array, and mass spectrometric (electrospray ionization) detec-
tion (HPLC-UV, HPLC-DMD-ESI-MS) in the aerial part of the introduced S. amoena sam-
ples, we have established the presence of 12 ecdysteroids, among which 20-hydroxyecdysone, 
polypodin B and six glycosylflavones, derivatives of schaftoside, isovitexin, swertisin, are  
the dominant compounds. It has been found that to increase the productivity of S. amoena, 
the use of ethyl ester of arachidonic acid is justified, and to obtain raw materials with a high 
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content of ecdysteroids and glycosylflavones, it is recommended to use 24-epibrassinolide 
(100 mg/L) and 4-chlorophenoxyacetic acid (100 mg/L) respectively. 
Keywords: Silene amoena, Caryophyllaceae, ecdysteroids, glycosylflavones, HPLC, phyto-
hormones, mass-spectrometry. 
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