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Аннотация. Методом молекулярной динамики рассчитана температурная зависи-
мость изохорной теплоемкости аргона от газовой до твердой фазы при постоянной 
плотности 109,4 кг/м³ и скорости охлаждения 10^9 К/с. Изохорная теплоемкость ар-
гона Cᵥ рассчитывается по угловым коэффициентам (dE/dT) отрезков линий при дис-
кретной аппроксимации зависимости внутренней энергии аргона от температуры с 
шагом 5 К.  
На графиках температурной зависимости изохорной теплоемкости системы частиц 
аргона наблюдаются характерные скачки, соответствующие фазовым переходам 
«газ — жидкость» и «жидкость — твердое тело». Обнаружено, что в твердой фазе ар-
гона с понижением температуры наблюдается уменьшение производной dCV/dT, что 
связано с образованием кластеров частиц и макропустот в структуре аргона. 
Ключевые слова: аргон, газ, жидкость, твердое тело, изохорная теплоемкость, кла-
стеры, метод молекулярной динамики, численный эксперимент. 
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Методы численного эксперимента динамического типа (методы молекуляр-

ной динамики и Монте-Карло) в классических системах частиц позволяют от-
слеживать микросостояния системы (координаты, скорости, ускорения отдель-
ных частиц), суммирование и усреднение по времени которых отражают основ-
ные макроскопические параметры — давление, плотность и температуру. Знание 
о взаимозависимости последних макроскопических величин позволяет рассчи-
тать в ходе численного эксперимента основные термодинамические параметры 
испытуемых систем в различных фазовых состояниях [1].  
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В данной работе в качестве объекта исследования методом молекулярной ди-
намики выбран аргон как вещество с простым сферически симметричным потен-
циалом взаимодействия его атомов, требующее вычислительного времени гораз-
до меньше, чем вещества с более сложным взаимодействием его частиц. С дру-
гой стороны, аргон широко используется в энергетике и технике для создания 
защитной теплоизоляции как инертный газ с низкой теплопроводностью, не 
вступающий в химические реакции даже при высоких температурах. Исследова-
ние взаимозависимости давления, плотности и температуры, т. е. термического 
уравнения состояния, а также их связь с энергетическими величинами легче от-
слеживать на моделях простых веществ, таких как инертные газы.  

В качестве теплоизоляции инертные газы могут находиться в условиях с по-
стоянным объемом. Поэтому представляется интересным проследить темпера-
турную зависимость изохорной теплоемкости аргона от газовой до твердых фаз 
при различных давлениях.  

Из-за ограниченных по скорости вычислений и возможностей современных 
компьютеров численными методами исследуются системы, состоящие из числа 
частиц порядка 103. Это число частиц во много раз меньше, чем в моле вещества 
в реальных теплофизических экспериментах. По этой причине в этих системах 
отсутствуют флуктуации плотности частиц, импульса и других величин. Эти не-
достатки успешно преодолеваются в методе молекулярной динамики использо-
вания периодических граничных условий для того, чтобы ограниченное вычис-
лительной мощностью число частиц порядка 103 достаточно точно отражало по-
ведение всей большой системы в равновесных состояниях. 

Классическая молекулярная динамика позволяет моделировать микроканони-
ческий ансамбль системы с постоянными значениями объема V, числа частиц N и 
энергии E. В процессе моделирования такой системы можно наблюдать и фикси-
ровать флуктуации температуры. По этим данным можно вычислить средний 
квадрат температуры <T2>, а также квадрат средней температуры <T>2 и найти 
теплоемкость системы при постоянном объеме СV с помощью следующего выра-
жения [2]: 
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здесь k — постоянная Больцмана.  
 
Алгоритм классической молекулярной динамики достаточно легко модифициро-

вать для моделирования процессов изохорного охлаждения или нагрева [2], что по-
зволило нам в процессе численного моделирования получать изохоры внутренней 
энергии системы частиц аргона Е от газовой до твердой фазы (рис. 1). Справа при-
веден участок графика в увеличенном виде с линией тренда, полученной мето-
дом наименьших квадратов и уравнением этой линии, где угловой коэффициент 
0,4114 равен СV = dE/dT. 

По полученной температурной зависимости внутренней энергии системы час-
тиц аргона (рис. 1) вычислялась его теплоемкость СV: 
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Значение теплоемкости согласно выражению (2) определялось как тангенс уг-
ла наклона отрезков прямой на дискретных участках изменения температуры  
в 5 К. Для вычисления углового коэффициента для каждого отрезка производи-
лась линейная аппроксимация зависимости E от T методом наименьших квадра-
тов. Значение теплоемкости для каждого отрезка прямой определялось как его 
угловой коэффициент и относилось к средней на отрезке температуре (рис. 1). 

 
 

 
 
 
 
 

 
 

Рис. 1. Зависимость внутренней энергии аргона от температуры, полученная  
при моделировании методом молекулярной динамики [2] при плотности 109,4 кг/м3  

и скорости охлаждения 109 К/с 
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Рис. 2. Температурная зависимость изохорной теплоемкости СV аргона  
при охлаждении со скоростью 109 К/с и плотности 109,4 кг/м3: 1 — в жидком состоянии 

[3]; 2 — в газообразном состоянии [3]; 3 — данные наших численных расчетов 
 
Так, например, на правой части рисунка 1 приведена увеличенная часть гра-

фика в интервале температур Т от 142 до 148 К и внутренней энергии Е от 29 до 
33,5 кДж/кг. Из уравнения отрезка прямой линии тренда, приведенного на этом 
рисунке 2, видно, что теплоемкость CV аргона в данных условиях равна 0,4114 
кДж/(кг·К), что превышает теплоемкость аргона как одноатомного идеального 
газа при нормальных условиях, равную 0,3122 кДж/(кг·К), на 0,0992. При нор-
мальных условиях (0 °C и 101325 Па) плотность аргона равна 1,7839 кг/м³. 

Результаты наших расчетов изохорной теплоемкости аргона при охлаждении 
со скоростью 109 К/с приведены на рисунке 2 (плотность 109,4 кг/м3, при темпе-
ратуре 150 К давление в системе равно 4 МПа). 

Как видно из рисунков 1 и 2, при охлаждении системы частиц аргона наблю-
даются характерные скачки в динамике теплоемкости, соответствующие фазо-
вым переходам газ — жидкость и жидкость — твердое тело. На участке от 150 до 
110 К наблюдается зависимость, соответствующая газовой фазе аргона, а на уча-
стке от 110 до 85 К теплоемкость испытывает скачок, что свойственно фазовому 
переходу. В данном случае это состояние интерпретируется нами как двухфазная 
область «перенасыщенный пар + жидкость». Ниже 85 К аргон переходит в твер-
дую фазу. На кривой температурной зависимости теплоемкости СV аргона в твер-
дой фазе наблюдается заметное уменьшение углового коэффициента dCV / dT с 
уменьшением температуры. 
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Рис. 3. Конфигурация частиц аргона, образованная при изохорном охлаждении  
со скоростью 109 К/с 

 
По-видимому, этот факт связан с образованием (рис. 3) кластеров частиц ар-

гона с пустотами относительно больших размеров по сравнению с межатомными 
расстояниями [4]. Это образование кластеров обусловлено тем, что увеличение 
плотности твердого аргона, вызванное понижением температуры и соответст-
венно уменьшением межатомных расстояний при неизменном объеме предос-
тавленного системе частиц, приводит к образованию значительных пустот [5], 
как показано на рисунке 3. 
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Abstract. Using the molecular dynamics method, the temperature dependence of the isochor-
ic heat capacity of argon was calculated from the gas phase to the solid phase at a constant 
density of 109.4 kg/m³ and a cooling rate of 10⁹ K/s. The isochoric heat capacity of argon, 
Cᵥ, is determined from the slopes (dE/dT) of line segments obtained by discrete approxima-
tion of the internal-energy temperature dependence, using a temperature increment of 5 K. 
The temperature-dependent plots of the isochoric heat capacity of the argon particle system 
show characteristic jumps corresponding to the gas–liquid and liquid–solid phase transi-
tions. It was observed that, in the solid phase of argon, decreasing temperature leads to a re-
duction in the derivative dCᵥ/dT, which is associated with the formation of particle clusters 
and macroscopic voids in the argon structure. 
Keywords: argon, gas, liquid, solid, isochoric heat capacity, clusters, molecular dynamics 
method, numerical experiment. 
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